## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

We prove Schauder estimates for a class of non-local elliptic operators with kernel $K(y)=a(y)/|y|^{d+\sigma}$ and either Dini or Hölder continuous data. Here $0 < \sigma < 2$ is a constant and $a$ is a bounded measurable function, which is not necessarily to be homogeneous, regular, or symmetric. As an application, we prove that the operators give isomorphisms between the Lipschitz--Zygmund spaces $\Lambda^{\alpha+\sigma}$ and $\Lambda^\alpha$ for any $\alpha>0$. Several local estimates and an extension to operators with kernels $K(x,y)$ are also discussed.

DCDS

We prove the solvability in Sobolev spaces of the conormal derivative problem for the stationary Stokes system with irregular coefficients on bounded Reifenberg flat domains. The coefficients are assumed to be merely measurable in one direction, which may differ depending on the local coordinate systems, and have small mean oscillations in the other directions. In the course of the proof, we use a local version of the Poincaré inequality on Reifenberg flat domains, the proof of which is of independent interest.

DCDS

We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables.
Our results can be applied to Neumann boundary value problems for

*stochastic*partial differential equations with BMO$_x$ coefficients.## Year of publication

## Related Authors

## Related Keywords

[Back to Top]