## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

We prove the local simultaneous linearizability of a pair of commuting
holomorphic functions at a shared fixed point under a very general -
we conjecture optimal - diophantine condition.
Let $f,g :\mathbb{C} \to \mathbb{C}$ with
a common fixed point at the origin and suppose that
$f(z) = \lambda z + \cdots$ and
$\lambda \ne 0$. The map, $f,$ is called

*linearizable*if there is an analytic diffeomorphism, $h$, which conjugates $f$ with its linear part in a neighborhood of the origin, i.e., $h^{-1} \circ f \circ h (z) = \lambda z$ where $\lambda = f'(0).$ Two such diffeomorphisms are*simultaneously linearizable*if they are linearized by the same map, $h$. If $|\lambda| = 1$ then the situation is delicate. Nonlinearizable maps are topologically abundant, i.e., for $\lambda$ in a dense co-meager set in $\mathbb{S}^1$ there exist nonlinearizable analytic maps with linear coefficient $\lambda$. In contrast there is a diophantine condition on $\lambda$ that is satisfied by a set of full measure in $\mathbb{S}^1$ which assures linearizability of the map $f$.## Year of publication

## Related Authors

## Related Keywords

[Back to Top]