CPAA
Regularity criterion for 3D Navier-Stokes equations in Besov spaces
Daoyuan Fang Chenyin Qian
Several regularity criterions of Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. The results show that a weak solution $u$ becomes regular if the gradient of velocity component $\nabla_{h}{u}$ (or $ \nabla{u_3}$) satisfies the additional conditions in the class of $L^{q}(0,T; \dot{B}_{p,r}^{s}(\mathbb{R}^{3}))$, where $\nabla_{h}=(\partial_{x_{1}},\partial_{x_{2}})$ is the horizontal gradient operator. Besides, we also consider the anisotropic regularity criterion for the weak solution of Navier-Stokes equations in $\mathbb{R}^3$. Finally, we also get a further regularity criterion, when give the sufficient condition on $\partial_3u_3$.
keywords: 3D Navier-Stokes equations Leray-Hopf weak solution Regularity criterion.
DCDS
On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations
Daoyuan Fang Ruizhao Zi
This paper is devoted to the study of the inhomogeneous hyperdissipative Navier-Stokes equations on the whole space $\mathbb{R}^N,N\geq3$. Compared with the classical inhomogeneous Navier-Stokes, the dissipative term $- Δ u$ here is replaced by $D^2u$, where $D$ is a Fourier multiplier whose symbol is $m(\xi)=|\xi|^{\frac{N+2}{4}}$. For arbitrary small positive constants $ε$ and $δ$, global well-posedness is showed for the data $(\rho_0, u_0)$ such that $(ρ_{0} - 1, u_0)∈ H^{\frac{N}{2}+ε} × H^{δ}$ with $\inf_{x\in \mathbb{R}^N}\rho_0>0$. To our best knowledge, this is the first result on the inhomogeneous hyperdissipative Navier-Stokes equations, and it can also be viewed as the high-dimensional generalization of the 2D result for classical inhomogeneous Navier-Stokes equations given by Danchin [Local and global well-posedness results for flows of inhomogeneous viscous fluids. Adv. Differential Equations 9 (2004), 353--386.]
keywords: inhomogeneous existence uniqueness. Navier-Stokes equations hyperdissipative
CPAA
$L^2$-concentration phenomenon for Zakharov system below energy norm II
Sijia Zhong Daoyuan Fang
In this paper, we will prove a $L^2$-concentration result of Zakharov system in space dimension two, with initial data $(u_0,n_0,n_1)\in H^s\times L^2\times H^{-1}$ ($\frac {1 2}{1 3} < s < 1$), when blow up of the solution happens, by resonant decomposition and I-method, which is an improvement of [13].
keywords: blow up $L^2$-concentration global existence. Zakharov system in space dimension two
CPAA
Compressible Navier-Stokes equations with vacuum state in one dimension
Daoyuan Fang Ting Zhang
In this paper, we consider the one-dimensional compressible Navier-Stokes equations for isentropic flow connecting to vacuum state with a continuous density when viscosity coefficient depends on the density. Precisely, the viscosity coefficient $\mu$ is proportional to $\rho^\theta$ and $0<\theta<1/2$, where $\rho$ is the density. The global existence of weak solutions is proved.
keywords: vacuum global existence of weak solutions Navier-Stokes equations
CPAA
Local and global existence results for the Navier-Stokes equations in the rotational framework
Daoyuan Fang Bin Han Matthias Hieber
Consider the equations of Navier-Stokes in $R^3$ in the rotational setting, i.e. with Coriolis force. It is shown that this set of equations admits a unique, global mild solution provided only the horizontal components of the initial data are small with respect to the norm the Fourier-Besov space $\dot{FB}_{p,r}^{2-3/p}(R^3)$, where $p \in [2,\infty]$ and $r \in [1,\infty)$.
keywords: global solution Rotational flows Fourier-Besov space Chemin-Lerner space. Littlewood-Paley decomposition
DCDS
Regularity of 3D axisymmetric Navier-Stokes equations
Hui Chen Daoyuan Fang Ting Zhang

In this paper, we study the three-dimensional axisymmetric Navier-Stokes system with nonzero swirl. By establishing a new key inequality for the pair $(\frac{ω^{r}}{r},\frac{ω^{θ}}{r})$, we get several Prodi-Serrin type regularity criteria based on the angular velocity, $u^θ$. Moreover, we obtain the global well-posedness result if the initial angular velocity $u_{0}^{θ}$ is appropriate small in the critical space $L^{3}(\mathbb{R}^{3})$. Furthermore, we also get several Prodi-Serrin type regularity criteria based on one component of the solutions, say $ω^3$ or $u^3$.

keywords: Navier-Stokes equations regularity criteria global well-posedness axisymmetric swirl
CPAA
Free boundary problem for compressible flows with density--dependent viscosity coefficients
Ping Chen Daoyuan Fang Ting Zhang
In this paper, we consider the free boundary problem of the spherically symmetric compressible isentropic Navier--Stokes equations in $R^n (n \geq 1)$, with density--dependent viscosity coefficients. Precisely, the viscosity coefficients $\mu$ and $\lambda$ are assumed to be proportional to $\rho^\theta$, $0 < \theta < 1$, where $\rho$ is the density. We obtain the global existence, uniqueness and continuous dependence on initial data of a weak solution, with a Lebesgue initial velocity $u_0\in L^{4 m}$, $4m>n$ and $\theta<\frac{4m-2}{4m+n}$. We weaken the regularity requirement of the initial velocity, and improve some known results of the one-dimensional system.
keywords: density-dependent viscosity coefficients. Compressible Navier-Stokes equations

Year of publication

Related Authors

Related Keywords

[Back to Top]