Journals
- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
-
AIMS Mathematics
-
Conference Publications
-
Electronic Research Announcements
-
Mathematics in Engineering
Open Access Journals
This paper considers a two-supplier one-retailer coordinated supply chain system with auction and contracting mechanism incorporating participants' risk attitudes. The risk attitude is quantified using the value-at-risk (VaR) measure and the retailer faces a stochastic linear price-dependent demand function. In the supply chain, the suppliers (providing identical products) compete with each other in order to win the ordering contract of the retailer. Several auction and contracting mechanisms are developed and compared. It can be analytically shown that the retail price of the risk-averse system is higher than that of the risk-neutral system, but the order quantity is lower than that of the risk-neutral system.
This paper considers an optimal production scheduling problem in a single-supplier-multi-manufacturer supply chain involving production and delivery time-delays, where the time-delays for the supplier and the manufacturers can have different values. The objective of both levels is to find an optimal production schedule so that their production rates and their inventory levels are close to the ideal values as much as possible in the whole planning horizon. Each manufacturer's problem, which involves one time-delayed argument, can be solved analytically by using the necessary condition of optimality. To tackle the supplier's problem involving $n+1$ different time-delayed arguments (where $n$ is the number of manufacturers) by the above approach, we need to introduce a model transformation technique which converts the original system of combined algebraic/differential equations with $n+1$ time-delayed arguments into a sum of $n$ sub-systems, each of which consists of only two time-delayed arguments. Thus, the supplier's problem can also be solved analytically. Numerical examples consisting of a single supplier and four manufacturers are solved to provide insight of the optimal strategies of both levels.
Year of publication
Related Authors
Related Keywords
[Back to Top]