## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

JMD

Given an $m \times n$ real matrix $Y$, an unbounded set $\mathcal{T}$
of parameters $t =( t_1, \ldots,
t_{m+n})\in\mathbb{R}_+^{m+n}$ with $\sum_{i = 1}^m t_i =\sum_{j = 1}^{n} t_{m+j} $ and $0<\varepsilon
\leq 1$, we say that Dirichlet's Theorem can be $\varepsilon$-improved
for $Y$ along $\mathcal{T}$ if for every sufficiently large $\v \in
\mathcal{T}$ there are nonzero $\q \in \mathbb Z^n$ and $\p \in \mathbb Z^m$
such that

$|Y_i\q - p_i| < \varepsilon e^{-t_i}\,$ $i = 1,\ldots, m$

$|q_j| < \varepsilon e^{t_{m+j}}\,$ $j = 1,\ldots, n$

(here $Y_1,\ldots,Y_m$ are rows of $Y$). We show that for any $\varepsilon<1$ and any $\mathcal{T}$ 'drifting away from walls', see (1.8), Dirichlet's Theorem cannot be $\epsilon$-improved along $\mathcal{T}$ for Lebesgue almost every $Y$. In the case $m = 1$ we also show that for a large class of measures $\mu$ (introduced in [14]) there is $\varepsilon_0>0$ such that for any drifting away from walls unbounded $\mathcal{T}$, any $\varepsilon<\varepsilon_0$, and for $\mu$-almost every $Y$, Dirichlet's Theorem cannot be $\varepsilon$-improved along $\mathcal{T}$. These measures include natural measures on sufficiently regular smooth manifolds and fractals.

Our results extend those of several authors beginning with the work of Davenport and Schmidt done in late 1960s. The proofs rely on a translation of the problem into a dynamical one regarding the action of a diagonal semigroup on the space $\SL_{m+n}(\mathbb R)$/$SL_{m+n}(\mathbb Z)$.

$|Y_i\q - p_i| < \varepsilon e^{-t_i}\,$ $i = 1,\ldots, m$

$|q_j| < \varepsilon e^{t_{m+j}}\,$ $j = 1,\ldots, n$

(here $Y_1,\ldots,Y_m$ are rows of $Y$). We show that for any $\varepsilon<1$ and any $\mathcal{T}$ 'drifting away from walls', see (1.8), Dirichlet's Theorem cannot be $\epsilon$-improved along $\mathcal{T}$ for Lebesgue almost every $Y$. In the case $m = 1$ we also show that for a large class of measures $\mu$ (introduced in [14]) there is $\varepsilon_0>0$ such that for any drifting away from walls unbounded $\mathcal{T}$, any $\varepsilon<\varepsilon_0$, and for $\mu$-almost every $Y$, Dirichlet's Theorem cannot be $\varepsilon$-improved along $\mathcal{T}$. These measures include natural measures on sufficiently regular smooth manifolds and fractals.

Our results extend those of several authors beginning with the work of Davenport and Schmidt done in late 1960s. The proofs rely on a translation of the problem into a dynamical one regarding the action of a diagonal semigroup on the space $\SL_{m+n}(\mathbb R)$/$SL_{m+n}(\mathbb Z)$.

JMD

We prove a conjecture of G.A. Margulis on the abundance of certain
exceptional orbits of partially hyperbolic flows on homogeneous spaces by utilizing
a theory of modified Schmidt games, which are modifications of $(\alpha,\beta)$-games introduced by W. Schmidt in mid-1960s.

DCDS

For the 'infinite
staircase' square tiled surface we classify the Radon invariant
measures for the
straight line flow, obtaining an analogue of the celebrated Veech
dichotomy for an infinite genus lattice surface.
The ergodic Radon measures arise from Lebesgue measure on a one parameter family of deformations of the surface.
The staircase is a $\mathbb{Z}$-cover of the torus,
reducing the question to the well-studied cylinder map.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]