## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We introduce a new measure of pseudorandomness, the (periodic) Hamming correlation of order $\ell$ which generalizes the Hamming autocorrelation ($\ell = 2$). We analyze the relation between the Hamming correlation of order $\ell$ and the periodic analog of the correlation measure of order $\ell$ introduced by Mauduit and Sárközy. Roughly speaking, the correlation measure of order $\ell$ is a finer measure than the Hamming correlation of order $\ell$. However, the latter can be much faster calculated and still detects some undesirable linear structures. We analyze examples of sequences with optimal Hamming correlation and show that they have large Hamming correlation of order $\ell$ for some very small $\ell>2$. Thus they have some undesirable linear structures, in particular in view of cryptographic applications such as secure communications.

The Legendre sequence possesses several desirable features of pseudorandomness in view of different applications such as a high linear complexity (profile) for cryptography and a small (aperiodic) autocorrelation for radar, gps, or sonar. Here we prove the first nontrivial bound on its arithmetic autocorrelation, another figure of merit introduced by Mandelbaum for errorcorrecting codes.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]