## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Mathematics in Science and Industry
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

JIMO

A symmetric matrix $A$ is completely positive (CP) if there exists an entrywise nonnegative matrix $V$ such that $A = VV ^T$. A real symmetric matrix is called completely positive separable (CPS) if it can be written as a sum of rank-1 Kronecker products of completely positive matrices. This paper studies the CPS problem. A criterion is given to determine whether a given matrix is CPS, and a specific CPS decomposition is constructed if the matrix is CPS.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]