## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

JMD

For nonuniform cofinite Fuchsian groups $\Gamma$ that satisfy a
certain additional geometric condition, we show that the Maass cusp
forms for $\Gamma$ are isomorphic to $1$-eigenfunctions of a
finite-term transfer operator. The isomorphism is constructive.

keywords:
geodesic flow.
,
symbolic dynamics
,
Maass cusp forms
,
period functions
,
transfer operator

DCDS

We construct cross sections for the geodesic flow on the orbifolds $\Gamma $\$ \mathbb{H}$ which are tailor-made for the requirements of transfer operator approaches to Maass cusp forms and Selberg zeta functions. Here, $\mathbb{H}$ denotes the hyperbolic plane and $\Gamma$ is a nonuniform geometrically finite Fuchsian group (not necessarily a lattice, not necessarily arithmetic) which satisfies an additional condition of geometric nature. The construction of the cross sections is uniform, geometric, explicit and algorithmic.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]