IPI
A data-driven edge-preserving D-bar method for electrical impedance tomography
Sarah Jane Hamilton Andreas Hauptmann Samuli Siltanen
In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known a priori that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called CGO sinogram. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.
keywords: electrical impedance tomography D-bar method. complex geometrical optics solutions image segmentation Inverse conductivity problem
IPI
A direct D-bar method for partial boundary data electrical impedance tomography with a priori information
Melody Alsaker Sarah Jane Hamilton Andreas Hauptmann
Electrical Impedance Tomography (EIT) is a non-invasive imaging modality that uses surface electrical measurements to determine the internal conductivity of a body. The mathematical formulation of the EIT problem is a nonlinear and severely ill-posed inverse problem for which direct D-bar methods have proved useful in providing noise-robust conductivity reconstructions. Recent advances in D-bar methods allow for conductivity reconstructions using EIT measurement data from only part of the domain (e.g., a patient lying on their back could be imaged using only data gathered on the accessible part of the body). However, D-bar reconstructions suffer from a loss of sharp edges due to a nonlinear low-pass filtering of the measured data, and this problem becomes especially marked in the case of partial boundary data. Including a priori data directly into the D-bar solution method greatly enhances the spatial resolution, allowing for detection of underlying pathologies or defects, even with no assumption of their presence in the prior. This work combines partial data D-bar with a priori data, allowing for noise-robust conductivity reconstructions with greatly improved spatial resolution. The method is demonstrated to be effective on noisy simulated EIT measurement data simulating both medical and industrial imaging scenarios.
keywords: Electrical impedance tomography partial boundary data Neumannto-Dirichlet map D-bar method a priori information

Year of publication

Related Authors

Related Keywords

[Back to Top]