JCD
Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model
Ferenc A. Bartha Ábel Garab
We consider the global asymptotic stability of the trivial fixed point of the difference equation $x_{n+1}=m x_n-\alpha \varphi(x_{n-1})$, where $(\alpha,m) \in \mathbb{R}^2$ and $\varphi$ is a real function satisfying the discrete Yorke condition: $\min\{0,x\} \leq \varphi(x) \leq \max\{0,x\}$ for all $x\in \mathbb{R}$. If $\varphi$ is bounded then $(\alpha,m) \in [|m|-1,1] \times [-1,1]$, $(\alpha,m) \neq (0,-1), (0,1)$ is necessary for the global stability of $0$. We prove that if $\varphi(x) \equiv \tanh(x)$, then this condition is sufficient as well.
keywords: neural networks. Global stability Neimark–Sacker bifurcation rigorous numerics strong resonance graph representations interval analysis
DCDS
Unique periodic orbits of a delay differential equation with piecewise linear feedback function
Ábel Garab
In this paper we study the scalar delay differential equation \linebreak $\dot{x}(t)=-ax(t) + bf(x(t-\tau))$ with feedback function $f(\xi)=\frac{1}{2}(|\xi+1|-|\xi-1|)$ and with real parameters $a>0,\ \tau>0$ and $b\neq 0$, which can model a single neuron or a group of synchronized neurons. We give necessary and sufficient conditions for existence and uniqueness of periodic orbits with prescribed oscillation frequencies. We also investigate the period of the slowly oscillating periodic solution as a function of the delay. Based on the obtained results we state an analogous theorem concerning existence and uniqueness of periodic orbits of a certain type of system of delay differential equations. The proofs are based among others on theory of monotone systems and discrete Lyapunov functionals.
keywords: period function delayed cellular neural networks periodic orbit. Delay differential equation discrete Lyapunov functional neural networks
DCDS
Global stability of a price model with multiple delays
Ábel Garab Veronika Kovács Tibor Krisztin
Consider the delay differential equation \begin{equation*} \dot{x}(t)=a \Bigg(\sum_{i=1}^n b_i\big[x(t-s_i)- x(t-r_i)\big]\Bigg)-g(x(t)), \end{equation*} where $a>0$, $b_i>0$ and $0\leq s_i < r_i$ $(i\in \{1,\dots,n\})$ are parameters, $g\colon \mathbb{R} \to \mathbb{R}$ is an odd $C^1$ function with $g'(0)=0$, the map $(0,\infty)\ni \xi \mapsto g(\xi)/\xi\in\mathbb{R}$ is strictly increasing and $\sup_{\xi>0} g(\xi)/\xi>2a$. This equation can be interpreted as a price model, where $x(t)$ represents the price of an asset (e.g. price of share or commodity, currency exchange rate etc.) at time $t$. The first term on the right-hand side represents the positive response for the recent tendencies of the price and $-g(x(t))$ is responsible for the instantaneous negative feedback to the deviation from the equilibrium price.
    We study the local and global stability of the unique, non-hyperbolic equilibrium point. The main result gives a sufficient condition for global asymptotic stability of the equilibrium. The region of attractivity is also estimated in case of local asymptotic stability.
keywords: multiple delay infinite delay price model Delay differential equation stable $D$ operator. global stability neutral equation

Year of publication

Related Authors

Related Keywords

[Back to Top]