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Abstract. The Koch snowflake KS is a nowhere differentiable curve. The

billiard table Ω(KS) with boundary KS is, a priori, not well defined. That
is, one cannot a priori determine the minimal path traversed by a billiard ball

subject to a collision in the boundary of the table. It is this problem which

makes Ω(KS) such an interesting, yet difficult, table to analyze.
In this paper, we approach this problem by approximating (from the inside)

Ω(KS) by well-defined (prefractal) rational polygonal billiard tables Ω(KSn).

We first show that the flat surface S(KSn) determined from the rational billiard
Ω(KSn) is a branched cover of the singly punctured hexagonal torus. Such a

result, when combined with the results of [6], allows us to define a sequence of

compatible orbits of prefractal billiards Ω(KSn). Using a particular addressing
system, we define a hybrid orbit of a prefractal billiard Ω(KSn) and show that

every dense orbit of a prefractal billiard Ω(KSn) is a dense hybrid orbit of
Ω(KSn). This result is key in obtaining a topological dichotomy for a sequence

of compatible orbits. Furthermore, we determine a sufficient condition for a

sequence of compatible orbits to be a sequence of compatible periodic hybrid
orbits.

We then examine the limiting behavior of a sequence of compatible periodic

hybrid orbits. We show that the trivial limit of particular (eventually) con-
stant sequences of compatible hybrid orbits constitutes an orbit of Ω(KS). In

addition, we show that the union of two suitably chosen nontrivial polygonal

paths connects two elusive limit points of the Koch snowflake. We conjecture
that such a path is indeed the subset of what will eventually be an orbit of the

Koch snowflake fractal billiard, once an appropriate ‘fractal law of reflection’

is determined.
Finally, we close with a discussion of several open problems and potential

directions for further research. We discuss how it may be possible for our
results to be generalized to other fractal billiard tables and how understand-

ing the structures of the Veech groups of the prefractal billiards may help in
determining ‘fractal flat surfaces’ naturally associated with the billiard flows.
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Figure 1. The Koch snowflake curve KS and its prefractal ap-
proximations KSn, for n = 0, 1, 2, · · · . As is well known, KS is a
fractal, nowhere differentiable and closed curve, of infinite length
and enclosing a finite area. Furthermore, it is self-similar; more
precisely, it is the union of three abutting self-similar sets, each an
isometric copy of the classic Koch curve. (See, e.g., [3].)

1. Introduction. The Koch snowflake curve KS, the construction of which is de-
picted in Figure 1, is everywhere nondifferentiable. The absence of a well-defined
tangent at any point of KS is what, a priori, prevents one from determining a bil-
liard flow on the billiard Ω(KS) with boundary KS. Indeed, since every point of
KS is apparently a singularity of the billiard flow, one cannot a priori find a min-
imal path traversed by a billiard ball subject to a collision in the boundary. Our
search for a solution to this problem will be, in part, motivated by the discussion
on experimental results given in our earlier paper [12].

For each n = 0, 1, 2, ..., the prefractal KSn is the nth (inner) polygonal approx-
imation to KS, and defines a rational polygonal billiard table Ω(KSn); that is,
a polygon whose interior angles are all rational multiples of π. (See Figure 1.)
Since the theory of rational polygonal billiards is very well developed (see, e.g.,
[4, 5, 7, 8, 9, 10, 11, 17, 18, 20, 21, 22, 23, 24, 26]), it is natural to want to define
the dynamics on the fractal “billiard table” Ω(KS) in terms of the dynamics on
its prefractal approximations Ω(KSn). The focus of this paper is then to build a
foundation on which we can begin to investigate the nature of orbits of the Koch
snowflake billiard Ω(KS). We next describe the contents of this paper and outline
our main results.

In order for the results of §§3–6 to be accessible to a broader audience, we pro-
vide in §2 a brief treatment of the necessary topics from the theory of mathematical
billiards and particular examples from fractal geometry. In connection with math-
ematical billiards, we also give a brief description of how a flat surface can be used
to rigorously relate the billiard flow on the billiard Ω(B), where B is a rational
polygon, to the geodesic flow on the corresponding flat surface S(B).

The main results of the paper are presented in §§3–5. §3 contains results on the
prefractal flat surface S(KSn), for any arbitrary n ≥ 0, and consequences of the
fact (also established in §3, see Theorem 13) that such a surface is a branched cover
of the hexagonal torus S(KS0). Most importantly, we show that the billiard flow
on the rational polygonal billiard Ω(KSn) is dynamically equivalent to the geodesic
flow on the associated prefractal flat surface S(KSn). Such a result allows us to
deduce that the set of directions for which a billiard orbit is closed (resp., dense) in
Ω(KS0) is exactly the set of directions for which an orbit is closed (resp., dense) in
Ω(KSn), for any n ≥ 0. (See Theorem 15 and Corollary 16.)

This fact is used extensively in §4 when describing orbits of Ω(KSn), n ≥ 0, and
constructing what we call a sequence of compatible orbits. Such a sequence consists
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of orbits of each of the billiards Ω(KSn), for n = 0, 1, 2, ..., with initial conditions
that are themselves compatible in a suitable manner; see Definitions 20, 22, 23 and
Remark 21. Using an addressing system developed in §2.4, we define what we are
calling hybrid orbits of Ω(KSn); see Definition 17. In a very concrete sense, hybrid
orbits are orbits that mostly survive the construction of Ω(KSn+1) from Ω(KSn).
We show that dense orbits of Ω(KSn) are actually dense hybrid orbits and we provide
sufficient conditions under which a sequence of compatible orbits is a sequence of
compatible periodic hybrid orbits. (See Proposition 19, along with Theorems 26
and 27.) In addition to this, we establish a topological dichotomy for sequences of
compatible orbits: a sequence of compatible orbits is either entirely comprised of
closed orbits or entirely comprised of dense hybrid orbits. (See Theorem 25.)

We would like to suggest that such sequences of compatible orbits should have
suitable limits that constitute orbits of the Koch snowflake billiard. As we will see,
there are hybrid orbits of Ω(KSn) that remain fixed in every subsequent approxi-
mation Ω(KSN ), n ≥ N , for some integer N ≥ 0; see Theorem 30 and Example 31.
Such hybrid orbits have basepoints corresponding to so-called Cantor points (i.e.,
points of KS which belong to some finite approximation KSn but are not vertices of
KSn; see §2.5), and they certainly constitute periodic orbits of the Koch snowflake
fractal billiard. In §5, a particular subset of basepoints can be derived from a cer-
tain sequence of compatible periodic hybrid orbits which is converging to a point of
the snowflake curve called an elusive limit point (i.e., a point of KS which does not
belong to any polygonal approximation KSn, for n ≥ 0; see §2.5). (An interesting
example of such a situation is provided by a sequence of compatible ‘hook orbits’,
discussed in Example 29; see also Example 28 further discussed in §5, as well as
Conjecture 32.) Such basepoints can then be connected to form what we call a
nontrivial polygonal path of Ω(KS). Furthermore, we consider the concatenation
of two suitably chosen nontrivial polygonal paths, thereby connecting two elusive
limit points of KS in a well-defined manner, as is done in §5.

In §6, since the field of “fractal billiards” is still in its infancy, we discuss direc-
tions for future research and provide several open questions and conjectures regard-
ing the ‘fractal flat surface’ S(KS) and the generalization of our results to other
fractal tables. A number of these open questions are addressed in current works in
progress (i.e., [14, 15]). For a more comprehensive, and somewhat different, list of
conjectures, we refer the interested reader to [13, §6].

2. Background and preliminaries.

2.1. Mathematical billiards. Under ideal conditions, we know that a point mass
making a perfectly elastic collision with a C1 surface (or curve) will reflect at an
angle which is equal to the angle of incidence, this being referred to as the law of
reflection.

Consider a compact region Ω(B) in the plane with connected boundary B. Then,
Ω(B) is called a planar billiard when B is smooth enough to allow the law of re-
flection to hold, off of a set of measure zero (where the measure is taken to be the
Hausdorff measure or the arc length measure). Though the law of reflection implic-
itly states that the angles of incidence and reflection be determined with respect to
the normal to the line tangent at the basepoint, we adhere to the equivalent con-
vention in the field of mathematical billiards that the vector describing the position
and velocity of the billiard ball (which amounts to the position and angle, since we
are assuming unit speed) be reflected in the tangent to the point of incidence. That
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Figure 2. A billiard ball traverses the interior of a billiard and
collides with the boundary. The velocity vector is pointed outward
at the point of collision. The resulting direction of flow is found by
either reflecting the vector through the tangent or by reflecting the
incidence vector through the normal and reversing the direction of
the vector. We use the former method in this paper.

is, employing such a law in order to determine the path on which the billiard ball
departs after impact essentially amounts to identifying certain vectors.

Then we can rigorously reformulate the law of reflection as follows: the vector
describing the direction of motion is the reflection—through the tangent at the point
of collision—of the translation of the vector previously describing the direction of
motion. One may express the law of reflection in terms of equivalence classes of
vectors by identifying these two vectors to form an equivalence class of vectors in
the unit tangent bundle corresponding to the billiard table Ω(B) (see Figure 2).
(See [19] for a detailed discussion of this equivalence relation on the unit tangent
bundle Ω(B)× S1.)

The billiard map fB is defined on the boundary B of the billiard table. Re-
ally, fB : (B × S1)/ ∼→ (B × S1)/ ∼, where the equivalence relation ∼ is as
discussed above. More precisely, if θ0 is an inward pointing vector at a basepoint
x0, then (x0, θ0) is the representative element of the equivalence class [(x0, θ0)] and
fkB([x0, θ0]) = [(xk, θk)], where fkB := fB ◦ ... ◦ fB is the kth iterate of fB .

When B is a nontrivial, connected polygon in R2, Ω(B) is called a polygonal
billiard. The collection of vertices of Ω(B) forms a set of zero measure (when we
take our measure to be the Hausdorff measure or simply, the arc-length measure on
B), since there are finitely many vertices. A rational billiard is defined below.

Definition 1 (Rational polygon and rational billiard). IfB is a nontrivial connected
polygon such that for each interior angle θj of B there are relatively prime integers
pj ≥ 1 and qj ≥ 1 such that θj =

pj
qj
π, then we call B a rational polygon and Ω(B)

a rational billiard.

Remark 2. In the sequel, we will simply refer to an element [(xk, θk)] by (xk, θk),
since the vector corresponding to θk is inward pointing at the basepoint xk. So
as not to introduce unneccessary notation, when we discuss the billiard map fKSn

corresponding to the nth prefractal billiard Ω(KSn), we will simply write fKSn
as

fn. When discussing the discrete billiard flow on (Ω(KSn)× S1)/ ∼, the kth point
in an orbit (xk, θk) ∈ (Ω(KSn) × S1)/ ∼ will instead be denoted by (xknn , θknn ), so
as to be clear as to which space such a point belongs. Specifically, kn refers to the
number of iterates of the billiard map fn necessary to produce the pair (xknn , θknn ).
An initial condition of an orbit of Ω(KSn) will always be referred to as (x0n, θ

0
n).
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In the event that a basepoint xj of f jB(x0, θ0) is a corner of Ω(B) (that is, a vertex
of the polygonal boundary B), the resulting closed orbit is said to be singular. In

addition, there exists a positive integer k such that the basepoint x−k of f−kB (x0, θ0)

is a corner of Ω(B). (Here, f−kB denotes the kth inverse iterate of fB .) The path then
traced out by the billiard ball connecting xj and x−k is called a saddle connection.

Definition 3 (Footprint of an orbit). Let On(x0n, θ
0
n) be an orbit of Ω(KSn). Then

Fn(x0n, θ
0
n) := On(x0n, θ

0
n) ∩KSn (1)

is called the footprint of the orbit Ω(KSn).

2.2. Flat surfaces and properties of the flow. In this section, we deal only
with flat surfaces constructed from rational billiards.

Definition 4 (Flat structure and flat surface). Let M be a compact, connected,
orientable surface. A flat structure on M is an atlas ω, consisting of charts of the
form (Uα, ϕα)α∈A , where Uα is a domain (i.e., a connected open set) in M and ϕα
is a homeomorphism from Uα to a domain in R2, such that the following conditions
hold:

1. the collection {Uα}α∈A cover the whole surface M except for finitely many
points z1, z2, ..., zk, called singular points;

2. all coordinate changing functions are translations in R2;
3. the atlas ω is maximal with respect to properties (1) and (2);
4. for each singular point zj , there is a positive integer mj , a punctured neigh-

borhood U̇j of zj not containing other singular points, and a map ψj from this

neighborhood to a punctured neighborhood V̇j of a point in R2 that is a shift

in the local coordinates from ω, and is such that each point in V̇j has exactly
mj preimages under ψj .

We say that a connected, compact surface equipped with a flat structure is a flat
surface.

Remark 5. Note that in the literature on billiards and dynamical systems, the
terminology and definitions pertaining to this topic are not completely uniform;
see, for example, [4, 5, 7, 8, 10, 9, 17, 18, 22, 23, 24, 26]. We have adopted the
above definition for clarity and the reader’s convenience.

We now discuss how to construct a flat surface from a rational billiard. Consider
a rational polygon billiard Ω(P ) with k sides and interior angles

pj
qj
π at each vertex

zj , for 1 ≤ j ≤ k, where the positive integers pj and qj are relatively prime. The
linear portions of the planar symmetries generated by reflection in the sides of the
polygonal billiard Ω(P ) generate the dihedral group DN , where N := lcm{qj}kj=1.
Next, we consider Ω(P ) ×DN (equipped with the product topology). We want to
glue ‘sides’ of Ω(P ) × DN together and construct a natural atlas on the resulting
surface M so that M becomes a flat surface.

As a result of the identification, the points of M that correspond to the vertices
of Ω(P ) constitute (removable or nonremovable) conic singularities of this surface.
Heuristically, Ω(P )×DN can be represented as {rjΩ(P )}2Nj=1, in which case it is easy
to see what sides are made equivalent under the action of ∼. That is, ∼ identifies
opposite and parallel sides in a manner which preserves the orientation.
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Figure 3. Unfolding an orbit of the equilateral triangle billiard Ω(KS0).

2.3. Unfolding a billiard orbit. Consider a rational polygonal billiard Ω(B) and
an orbit O(x0, θ0). Reflecting the billiard Ω(B) and the orbit in a side of the
billiard containing a basepoint of the orbit (or an element of the footprint of the
orbit) partially unfolds the orbit O(x0, θ0); see Figure 3. Continuing this process
until the orbit is a straight line produces as many copies of the billiard table as there
are elements of the footprint. That is, if the period of an orbit O(x0, θ0) is some
positive integer p, then the number of copies of the billiard table in the unfolding
is also p. Therefore, we refer to such a straight line as the unfolding of the billiard
orbit.

2.4. Symbolic representation of the ternary Cantor set. Every point of the
ternary Cantor set C (hereafter referred to as the Cantor set) has a ternary rep-
resentation given in terms of the characters l, c and r (standing for left, center
and right, respectively). For example, in terms of our alphabet, we say 1/3 has a
ternary representation given by lr and 1/4 has a ternary representation given by lr,
where the over-bar indicates that the corresponding string of symbols is repeated ad
infinitum. We stress that a ternary representation will always consist of infinitely
many characters, while a ternary expansion of an element of the unit interval I
can be finite, which is illustrated by the example of the rational value 1/3 = 0.1
in base-3. For the sake of simplicity, we take every element of C to have a ternary
representation that contains no c’s. (What we want to prevent is an element of C
having a representation determined by approaching it from the complement of C
in I = [0, 1]. In this way, every point of C has a unique ternary representation.)

In the sequel, the type of ternary representation will provide us with important
information. Particular qualities of the representation will, in part, dictate the type
of resulting orbit and the nature of the sequence of compatible orbits.

Notation 6. The type of ternary representation can be defined as follows. If x ∈ I,
then the first coordinate of [·, ·] describes the characters that occur infinitely often
and the second coordinate of [·, ·] describes the characters that occur finitely often.
If we want to discuss many different types of ternary representations, then we use
‘or.’ That is, the notation [·, ·]∨ [·, ·]∨ ...∨ [·, ·] is to be read as [·, ·] or [·, ·] or ... or
[·, ·]. If the collection of characters occurring finitely often is empty, then we denote
the corresponding type of ternary representation by [·, ∅].

Example 7. If an element x ∈ I = [0, 1] has a ternary representation consisting of
infinitely many c’s and l’s but finitely many r’s, then we write this type of ternary
representation as [lc, r]. If we have a collection of points in I such that each point
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Figure 4. An illustration of Definition 8 in terms of KS0 = ∆ and
KS1. Represented are the three cells C1,1, C1,2 and C1,3 of Ω(KS1).

has a ternary representation consisting of infinitely many c’s and l’s and finitely
many r’s or else infinitely many l’s and r’s and finitely many c’s, then we write the
corresponding types of ternary representations as [lc, r] ∨ [lr, c].

2.5. The Koch snowflake. The Koch snowflake KS is a compact, connected and
infinitely long curve in the plane with the property that at no point of the snowflake
KS can one form a well-defined tangent. This last property is what makes defining
a law of reflection on the Koch snowflake billiard boundary so difficult.

The Koch snowflake is constructed, as shown in Figure 1, by removing the open
middle third of each successive side of length 1/3n−1 and placing at each pair of
endpoints two uprights that would have formed the sides of an equilateral triangle
with side lengths measuring 1/3n.

Next, we define what a cell of the Koch snowflake billiard is.

Definition 8 (A cell Cn,ν of Ω(KSn)). Consider (the ‘set-theoretic difference’)
Ω(KSn)\Ω(KSn−1). Each resulting triangular region is then called a cell of Ω(KSn).
We denote a cell of Ω(KSn) by Cn,ν , where ν denotes the side of Ω(KSn−1) to which
the cell was glued; see Figure 4. Hence, there are 3 · 4n−1 cells Cn,ν of Ω(KSn) and
so 1 ≤ ν ≤ 3 · 4n−1.

In §4, we will be interested in the information provided by the ternary represen-
tation of an element x0n of a side sn,ν of Ω(KSn). We have already seen how to
represent elements of the unit interval I. An element of a side sn,ν of Ω(KSn) has
a ternary representation also given in terms of the characters l, c and r.

In the Koch snowflake KS, there are three types of points: corners, Cantor points
and elusive limit points. A corner of the Koch snowflake KS is a point of KS that
is a corner of a finite approximation KSn, for some n ≥ 0. A Cantor point of KS
is a point of a finite approximation KSn, for some n ≥ 0, such that the ternary
representation of this point (with respect to the side on which it lies) has the form
[lr, ∅] (that is, consists of infinitely many l’s and r’s and no c’s). Therefore, a Cantor
point is a point of KS that is not a corner, but definitely a point of KS that exists
in some finite approximation. An elusive limit point of KS is a point of KS that
never belongs to any finite approximation KSn. We will see that it is the Cantor
points and elusive limit points that will be of the greatest interest in the sequel.

3. The Koch snowflake prefractal flat surface S(KSn). We denote by S(P )
the flat surface M constructed from a particular rational billiard Ω(P ).
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Figure 5. The flat surfaces S(KSn), for n = 1, 2, 3. Note that the
proper identification is not shown in the figures above. Given the
arrangement of the six copies of KSn, one then identifies opposite
and parallel sides to make the proper identification that results in
a geodesic flow that is dynamically equivalent with the billiard flow
on the associated billiards Ω(KS1),Ω(KS2),Ω(KS3).

In particular, S(KSn) is the flat surface associated with the prefractal billiard
Ω(KSn). The flat surfaces S(KSn), n = 1, 2, 3, are given in Figure 5. For each
billiard Ω(KSn), the group of symmetries DN , where N = lcm{qj}3·4

n

j=1 (that is, the
second component in the product Ω(KSn)×DN ) is the dihedral group D3, and thus
is independent of n. From this, we deduce that for any n ≥ 0, there are six copies
of the prefractal billiard table Ω(KSn) (with sides appropriately identified) used in
the construction of the associated flat surface S(KSn) := (Ω(KSn) × D3)/ ∼; see
Figure 5. We refer the reader back to §2.2 for a general discussion of flat surfaces
and, e.g., to [16] for the topological notions (such as covering map, branched cover)
used in this section (esp., in Theorem 13 and its proof).

Remark 9. For the remainder of the paper, when we say that a regular polygon
is of scale n, we mean that the side length of the regular polygon is 1/3n. For
example, an equilateral triangle of scale n is one for which the side length is 1/3n.

The flat surface S(KSn) is a surface with both types of conic singularities: re-
movable and nonremovable. In constructing the flat surface S(KSn) via Ω(KSn),
we see that the nonremovable conic singularities correspond to corners with obtuse
angles of Ω(KSn) and removable singularities correspond to corners with acute an-
gles (both measured relative to the interior of Ω(KSn)). Since for every n ≥ 1, the
measure of every obtuse corner is the same (specifically, 4π/3 radians), it follows
that the conic angle of a nonremovable singularity is 8π. For the same reason,
every corner with an acute angle (with every acute angle measuring π/3 radians)
gives rise to a removable singularity with conic angle 2π; this is, in fact, a defining
characteristic of a removable singularity.

Proposition 10. For any n ≥ 0, the genus gn of the surface S(KSn) is given by

gn = 3 · 4n − 2. (2)

Proof. Let Ω(P ) be a rational billiard and let {Vj}νj=1 denote the ν vertices of
the polygon P . For each j = 1, ..., ν, let the measure of the angle formed by the
vertex Vj be (pj/qj)π, and let N := lcm{qj}νj=1. Then, if g is the genus of the
corresponding flat surface S(P ), the Euler characteristic χ = 2 − 2g of that same
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Figure 6. The hexagonal torus S(KS0). As usual, similarly
marked sides are identified. It should be noted that S(KS0) is
topologically (but not metrically) equivalent to the flat square
torus.

surface is given by

χ = N

ν∑
j=1

1

qj
−Nν + 2N ; (3)

see [9] for a detailed description of how to calculate the genus of a surface that arises
from a rational billiard table.

The prefractal billiard Ω(KSn) has 3 · 4n many sides and as many vertices.
Moroever, Nn = lcm{qj}3·4

n

j=1 = 3, for every n ≥ 0. The Euler characteristic
χn = 2− 2gn of S(KSn) is given by Equation (3). Therefore, solving for gn, we see
that the genus of the prefractal flat surface S(KSn) is given by Equation (2). �

3.1. S(KSn) is a branched cover of S(KS0). Taking as inspiration the results
and methods of Gutkin and Judge in [7] and [8], we now show that for each n ≥ 1,
the flat surface S(KSn) is a branched cover of the hexagonal torus S(KS0); see
Figure 6. To such end, we establish several results culminating in this fact.

Lemma 11. Let n ∈ N. Then, for any positive integer k ≥ n, S(KSn) can be tiled
by equilateral triangles of scale k.

Proof. This follows from the construction of the Koch snowflake. We note that each
triangle of scale n, denoted ∆n, can be tiled by 9k−n triangles of scale k ≥ n; see
Figure 7 for the case when k = n+ 1. Note that S(KSn) = (Ω(KSn)×D3)/ ∼ and
that Ω(KSn) is constructed from Ω(KSn−1) by gluing a copy of ∆n to every side
sn−1,ν at the middle third of sn−1,ν . Since every triangle ∆n−1 tiling Ω(KSn−1)
can also be tiled by ∆n, it follows that Ω(KSn) is tiled by ∆n. So, S(KSn) can be
tiled by equilateral triangles of scale k, for every k ≥ n. �

In the sequel, given a bounded set A ⊆ R2, we will write that “A can be tiled by
Hn” in order to indicate that A can be tiled by finitely many copies of hexagonal
tiles Hn of scale n.

Proposition 12. Let n ∈ N. Then the flat surface S(KSn) can be tiled by Hk, for
all k ≥ n+ 1, in such a way that each conic singularity is at the center of some tile
Hk.

Proof. We see in Figure 8 that S(KS1) can be tiled by H2 such that each conic
singularity is at the center of some tile H2. Each H2 is tiled by six equilateral
triangles ∆2. As was seen in the proof of Lemma 11, each ∆2 is tiled by nine ∆3

such that six of these triangles form a hexagonal tile H3; see Figure 7. At the center
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Figure 7. We see that ∆n is tiled by nine copies of ∆n+1, six of
which form a hexagonal tile Hn+1 in the center.

Figure 8. Tiling the flat surface S(KS1) by hexagonal tiles H2.
We note that the conic singularities (both removable and nonre-
movable) are at the center of hexagonal tiles.

of H2 is a copy of H3. Hence, each conic singularity remains at the center of some
tile H3; see Figure 9. Continuing in this fashion, we see that for each k ≥ 2, Hk

tiles S(KS2) in such a way that each conic singularity is at the center of some Hk.
Suppose there exists N ∈ N such that, for every n ≤ N , S(KSn) can be tiled

by Hk, for every k ≥ n + 1. In particular, S(KSN ) can be tiled by Hk, for every
k ≥ N + 1. We then have that, for every k ≥ N + 2, S(KSN ) can be tiled by Hk.
By Lemma 11, ∆N+1 tiles S(KSN+1). Each triangular region ∆N+1 in S(KSN+1)
but not in S(KSN ) is tiled by nine triangles ∆N+2 in such a way that six ∆N+2

comprise a tile HN+2. Continuing in this fashion, we see that each ∆k contributes
to a hexagonal tile Hk (as part of the embedded tiling) in such a way that each
conic singularity is at the center of some hexagonal tile Hk. �

Theorem 13. For every n ∈ N, the prefractal Koch snowflake flat surface S(KSn)
is a branched cover of the (singly punctured) prefractal Koch snowflake flat surface
S(KS0), which is the hexagonal torus. Such a covering map pn : S(KSn)→ S(KS0)
is given by suitably defined translations on S(KSn).

Proof. The center point x0 of the flat hexagonal torus S(KS0) is a branched locus
of the cover S(KSn) when S(KSn) is tiled by Hn+1 as described in Proposition 12.
This follows from the fact that every nonremovable conic singularity of S(KSn) is
at the center of four hexagonal tiles. Specifically, this means that this center point
x0 is not evenly covered by the covering map pn : S(KSn) → S(KS0) determined
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Figure 9. Six triangles ∆n tile Hn. The hexagonal tile Hn is tiled
by seven tiles Hn+1 with six rhombic tiles.

Figure 10. The lattice points constitute linear integer combina-
tions of the basis vectors {u1, u2} = {(1, 0), (1/2,

√
3/2)}. Here

we show an unfolded orbit to emphasize the utility of such a tool.
The unfolded orbit has an initial direction that is rational, meaning
such an orbit will be closed in the equilateral triangle.

by suitable translations of hexagonal tiles Hn+1 on S(KSn). Any other point in
S(KS0) is evenly covered since every element in the fiber p−1n (z), z 6= x0, has a
conic angle of 2π. �

3.2. Minimality of the flow on Ω(KSn) and its consequences. When dis-
cussing billiard orbits of Ω(KSn), we will find it more convenient to measure angles
of incidence and reflection relative to a fixed coordinate system. As such, we sup-
pose that the left corner of the equilateral triangle with side length one constitutes
the origin. However, on occasion, we will find it useful to refer to the angle of reflec-
tion measured relative to a particular side. So that no confusion arises, when we are
discussing such a situation, if $ is an angle measured relative to a side of Ω(KSn),
then θ($) is the same angle measured relative to the fixed coordinate system.

If {u1, u2} is a basis for R2, then a vector z ∈ R2 is called rational with respect
to {u1, u2} if z = mu1 + nu2, for some m,n ∈ Z. Combining the results of [7] with
Theorem 3 of [6], we can state the following result, which we do not claim as a new
theorem, but which we rephrase in a way that is suitable for our purposes.

Theorem 14 ([6]). Let S(P ) be a flat surface determined from a rational polygonal
billiard Ω(P ). If S(P ) is a branched cover of a singly punctured torus, then a
geodesic on S(P ) is periodic or forms a saddle connection if and only if the geodesic
has an initial direction that is rational. In addition, a geodesic on S(P ) is dense if
and only if the geodesic has an initial direction that is irrational.

By what we saw in §§2.2 and 2.3, the geodesic flow on S(KSn) is dynamically
equivalent to the billiard flow on Ω(KSn). In §3.1, we proved that S(KSn) is a
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branched cover of the singly punctured torus S(KS0). Applying Theorem 14 to the
Koch snowflake prefractal flat surfaces, we then obtain the following result.

Theorem 15. Let n ≥ 0. A direction θ is a rational direction (with respect to the

basis {u1, u2} = {(1, 0), (1/2,
√

3/2)}) if and only if a geodesic in the direction of
θ on S(KSn) is periodic or forms a saddle connection. Furthermore, a direction θ
is an irrational direction (with respect to {u1, u2}) if and only if a geodesic in the
direction of θ on S(KSn) is dense.

Because the geodesic flow on the prefractal flat surface S(KSn) is dynamically
equivalent to the billiard flow on the corresponding billiard table Ω(KSn), we can
state Theorem 15 in terms of the billiard flow on the prefractal billiard Ω(KSn).

Corollary 16. Let n ≥ 0. A direction θ is a rational direction (with respect to

{u1, u2} = {(1, 0), (1/2,
√

3/2)}) if and only if an orbit in the direction of θ of
Ω(KSn) is closed. Furthermore, a direction θ is an irrational direction (with respect
to {u1, u2}) if and only if an orbit with the initial direction of θ in Ω(KSn) is dense.

4. Hybrid orbits of the Koch snowflake prefractal billiard Ω(KSn). We
want to construct sequences of orbits in such a way that one orbit is suitably
related to another. More precisely, we want to develop a notion of ‘compatibility’
that relates an orbit of Ω(KSn) to an orbit of Ω(KSn+1), for each n ≥ 0. Let us
first consider an orbit of Ω(KS0). Such an orbit has basepoints that potentially
lie on segments that are removed as part of the construction of finer prefractal
approximations, on the Cantor set that remains as part of the construction process
or both. Obviously, an orbit of Ω(KS0) may not be an orbit of Ω(KS1).1 However,
depending on the types of the ternary representations of the basepoints of the
orbit of Ω(KS0), a sequence of compatible orbits will exhibit particularly interesting
dynamical behavior. While certain orbits in a so-called sequence of compatible
orbits will form saddle connections in their respective billiard tables, we will see
that this is the exception rather than the rule.

A hybrid orbit of a prefractal billiard is an orbit of Ω(KSn) for which the elements
of the corresponding footprint are such that they correspond to at most two points
of KS with finite ternary expansions (i.e., corners). As we will see, certain orbits
remain constant from one prefractal billiard Ω(KSn) to the next and certain orbits
change entirely with each prefractal billiard approximation. The term hybrid is
meant to indicate that such orbits have qualities that are found in these two types
of orbits mentioned in the previous sentence. As such, Definition 17 is phrased so
as to include these two types of orbits and more general orbits that have qualities
reminiscent of both. The motivation for defining such an orbit comes from the fact
that we are interested in the situation where a periodic orbit is an element in a
sequence of orbits, where each orbit in the sequence is also a periodic orbit.

We are further motivated in our definition of a hybrid orbit based on Theorem
26, which states that if O0(x00, θ

0
0) is a periodic hybrid orbit of Ω(KS0) and no

basepoints of the orbit correspond to ternary points of KS0, then, for every n ≥ 0,
the compatible orbit On(x0n, θ

0
n) (see Definitions 20, 22, 23 and Remark 21) will be

a periodic hybrid orbit of Ω(KSn). In general, knowing whether or not an orbit
ON (x0N , θ

0
N ) is a dense orbit or a closed orbit will be sufficient for determining a

1See Figure 11 and the corresponding caption, as well as the discussion preceding Definition
20 for an example illustrating the situation where basepoints of an orbit O0(x00, θ

0
0) lie on segments

of Ω(KS0) that are removed in the construction of Ω(KS1).
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topological dichotomy for a sequence of compatible orbits {On(x0n, θ
0)}∞n=N ; see

Definition 23 and Theorem 25. To such end, we begin by defining a hybrid orbit
below.

Definition 17 (Hybrid orbit). Let On(x0n, θ
0
n) be an orbit of Ω(KSn). If all but

at most two basepoints xknn ∈ Fn(x0n, θ
0
n) have ternary representations (determined

with respect to the side sn,ν on which each point resides) of type [c, lr] ∨ [cl, r] ∨
[cr, l] ∨ [lcr, ∅] ∨ [lr, ∅], then we call On(x0n, θ

0
n) a hybrid orbit of Ω(KSn).

Definition 18 (A P hybrid orbit). If On(x0n, θ
0
n) is a hybrid orbit with property

P, then we say that it is a P hybrid orbit.

Proposition 19. If On(x0n, θ
0
n) is a dense orbit of Ω(KSn), then On(x0n, θ

0
n) is a

dense hybrid orbit.

Proof. Suppose there were two basepoints xknn and x
k′n
n of a dense orbit On(x0n, θ

0
n)

with ternary representations of types [l, cr] ∨ [r, lc]. Then, there exists N ≥ n such
that the orbit connects two vertices of two equilateral triangles of scale N tiling
Ω(KSn). Since this orbit can be unfolded (much as in §2.3) into the corresponding
flat surface and then projected down onto the hexagonal torus, such an orbit (or
flow line on the flat surface) must be at least a saddle connection of the equilateral
triangle billiard. However, such a direction θ0n should yield a dense billiard flow in

Ω(KS0), which is not the case. Hence, xknn and x
k′n
n do not both have a ternary

representation of type [l, cr] ∨ [r, lc]. Moreover, if any basepoint of On(x0n, θ
0
n) al-

ready corresponds to a corner of Ω(KSn), then a similar argument shows that no
other basepoint may have a ternary representation of type [l, cr]∨ [r, lc]. Therefore,
On(x0n, θ

0
n) is a dense hybrid orbit. �

Beginning with Definition 20, we will construct a framework for handling the
Koch snowflake billiard Ω(KS), part of which has been referred to at the beginning
of this section. In particular, we will define a specific type of sequence of orbits
of prefractal approximations, and examine various properties of such a sequence
of orbits. To motivate the following definitions, we examine a particular orbit
O0(x00, θ

0
0) of Ω(KS0) and the consequences for the orbit when constructing Ω(KS1)

from Ω(KS0). In Figure 11, we see an example of an orbit O0(x00, θ
0
0) with basepoints

lying on segments of the boundary of Ω(KS0) that are removed as part of the
construction of Ω(KS1) from Ω(KS0). Consequently, the orbit O0(x00, θ

0
0) is no

longer an orbit of Ω(KS1), since the basepoints of the orbit lie in the interior of
Ω(KS1). The third image in Figure 11 shows an orbit O1(x01, θ

0
1) with the property

that x00 (now a point in the interior of Ω(KS1)) and x01 are collinear in the direction
determined by θ00 (which, by construction, is equal to θ01). As we will see, the two
initial conditions (x00, θ

0
0) and (x01, θ

0
1) are what we call compatible initial conditions.

We then build upon the definition of compatible initial conditions to construct what
we call a sequence of compatible initial conditions and, subsequently, a sequence of
compatible orbits. It is in this way that we will be able to investigate the behavior
of what we call nontrivial polygonal paths in §5. We continue with the following
definition.

Definition 20 (Compatible initial conditions). Without loss of generality, suppose
that n and m are nonnegative integers such that n > m. Let (x0n, θ

0
n) ∈ (KSn ×

S1)/ ∼ and (x0m, θ
0
m) ∈ (KSm × S1)/ ∼ be two initial conditions of the orbits

On(x0n, θ
0
n) and Om(x0m, θ

0
m), respectively, where we are assuming that θ0n and θ0m
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Figure 11. In this figure, we see that an orbit O0(x00, θ
0
0) of

Ω(KS0) need not be an orbit of Ω(KS1). Upon removing segments
and constructing Ω(KS1) from Ω(KS0), the basepoints of the orbit
become points of the interior of Ω(KS1). However, we can construct
an orbit O1(x01, θ

0
1) of Ω(KS1) that is compatible with O0(x00, θ

0
0) in

the sense discussed in Remark 21.

are both inward pointing. If θ0n = θ0m and if x0n and x0m lie on a segment determined
from θ0n (or θ0m) that intersects KSn only at x0n, then we say that (x0n, θ

0
n) and

(x0m, θ
0
m) are compatible initial conditions.

Remark 21. When two initial conditions (x0n, θ
0
n) and (x0m, θ

0
m) are compatible,

then we simply write each as (x0n, θ
0) and (x0m, θ

0). If two orbits Om(x0m, θ
0
m) and

On(x0n, θ
0
n) have compatible initial conditions, then we say that such orbits are

compatible.

Not every orbit must pass through the region of Ω(KSn) corresponding to the
interior of Ω(KS0), let alone pass through the interior of Ω(KSm), for any m < n.
Because of this, it may be the case that an initial condition (x0n, θ

0) is not compatible
with (x0m, θ

0), for any m < n.

Definition 22 (Sequence of compatible initial conditions). Let {(x0i , θ0i )}∞i=N be a
sequence of initial conditions, for some integer N ≥ 0. We say that this sequence is
a sequence of compatible initial conditions if for every m ≥ N and for every n > m,
we have that (x0n, θ

0
n) and (x0m, θ

0
m) are compatible initial conditions. In such a case,

we then write the sequence as {(x0i , θ0)}∞i=N .

Definition 23 (Sequence of compatible orbits). Consider a sequence of compat-
ible initial conditions {(x0n, θ0)}∞n=N . Then the corresponding sequence of orbits
{On(x0n, θ

0)}∞n=N is called a sequence of compatible orbits.

If Om(y0m, θ($
0
m)) is an orbit of Ω(KSm), then Om(y0m, θ($

0
m)) is a member of a

sequence of compatible orbits {On(x0n, $
0)}∞n=N for some N ≥ 0. It is clear from

the definition of a sequence of compatible orbits that such a sequence is determined
by the first orbit ON (x0N , $

0). Since the initial condition of an orbit determines
the orbit, we can say without any ambiguity that a sequence of compatible orbits
is determined by an initial condition (x0N , $

0).

Definition 24 (A sequence of compatible P orbits). Let P be a property (resp.,
P1, ...,Pj a list of properties). If every orbit in a sequence of compatible orbits has
the property P (resp., a list of properties P1, ...,Pj), then we call such a sequence
a sequence of compatible P (resp., P1, ...,Pj) orbits.
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We know that for each fixed billiard table Ω(KSn) and fixed direction θ0n, an
orbit is either closed or dense, regardless of the initial basepoint x0n. Applying the
results in §§3.1 and 3.2, we have the following.

Theorem 25 (A topological dichotomy for sequences of compatible orbits). Let
{On(x0n, θ

0)}∞n=N be a sequence of compatible orbits. Then {On(x0n, θ
0)}∞n=N is ei-

ther entirely comprised of closed orbits or is entirely comprised of dense hybrid
orbits.

Proof. Let {On(x0n, θ
0)}∞n=N be a sequence of compatible orbits. By construction

θ0 is the same initial direction for every orbit in the sequence of compatible orbits.
Suppose θ0 is rational with respect to the basis {u1, u2} := {(1, 0), (1/2,

√
3/2)}.

Then, applying Corollary 16, for every n ≥ N , we deduce that the orbit On(x0n, θ
0)

is a closed orbit of Ω(KSn). Hence, {On(x0n, θ
0)}∞n=N is a sequence of compatible

orbits for which every orbit in the sequence is closed.
Suppose now that θ0 is irrational with respect to the basis {u1, u2}. Then, by

Corollary 16, for every n ≥ N , the orbit On(x0n, θ
0
n) is a dense orbit of Ω(KSn).

By Proposition 19, On(x0n, θ
0
n) is therefore a dense hybrid orbit of Ω(KSn). Hence,

{On(x0n, θ
0)}∞n=N is a sequence of compatible orbits for which every orbit in the

sequence is a dense hybrid orbit. �

Theorem 26. If O0(x00, θ
0
0) is a periodic hybrid orbit of Ω(KS0) with no base-

points corresponding to ternary points, then for every n ≥ 0, the compatible orbit
On(x0n, θ

0
n) is a periodic hybrid orbit of Ω(KSn).

Proof. Since Ω(KSn) can be tiled by scale n copies of Ω(KS0), an orbit of Ω(KS0)
can be unfolded in the Koch snowflake prefractal billiard Ω(KSn), for every n ≥ 0;
see §2.3. Therefore, each basepoint of the corresponding compatible orbit
On(x0n, θ

0
n) will have a ternary representation consistent with that described in

Definition 17. �

Theorem 27 (A sequence of compatible periodic hybrid orbits). Consider a vector

(a, b) that is rational with respect to the basis {u1, u2} := {(1, 0), (1/2,
√

3/2)} and
let x00 ∈ I. Then, we have the following :

1. If a and b are both positive integers with b being odd, x00 = r
4s , for some r, s ∈ N

with s ≥ 1, 1 ≤ r < 4s being odd and θ0 := arctan b
√
3

2a+b , then the sequence of

compatible closed orbits {On(x0n, θ
0)}∞n=0 is a sequence of compatible periodic

hybrid orbits.
2. If a = 1/2, b is a positive odd integer, x00 = r

2s , for some r, s ∈ N with

s ≥ 1, 1 ≤ r < 2s being odd and θ0 := arctan b
√
3

2a+b , then the sequence of

compatible closed orbits {On(x0n, θ
0)}∞n=0 is a sequence of compatible periodic

hybrid orbits.

Proof. Let r, s ∈ N, with s ≥ 1 and 1 ≤ r < 4s, a and b both be positive integers with

b being odd and x00 = r
4s . Suppose a line starting at (x00, 0) with slope b

√
3

2a+b intersects

a point in R2 that would correspond to a lattice point of a lattice comprised of
equilateral triangles at scale k. If m,n, p, q, k ∈ Z, with k ≥ 1 and p, q ≤ 3k, then
such a point has the form (m+ p/3k)u1 + (n+ q/3k)u2. Then, using the equation
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for a line in the plane, we find that(
n+

q

3k

) √3

2
=

b
√

3

2a+ b

(
m+

p

3k
+
n

2
+

q

2 · 3k
− r

4s

)
, (4)(

3kn+ q

3k

)
1

2
=

b

2a+ b

(
4s3km+ 4sp+ 2 · 4s−13kn+ 2 · 4s−1q − 3kr

3k4s

)
, (5)

2 · 4s−1(3kn+ q)(2a+ b) = b(4s3km+ 4sp+ 2 · 4s−13kn+ 2 · 4s−1q − 3kr). (6)

Since b and r are odd, the left-hand side of Equation (6) is even, but the right-
hand side is not. Therefore, our assumption that such a point corresponding to a

lattice point at scale k laid on the line beginning at x00 = r/4s with slope b
√
3

2a+b was

incorrect. It follows that such a line emanating from x00 = r/4s avoids all points in
the boundary of Ω(KS0) having finite ternary expansions. By Theorem 26, every
orbit in the sequence of compatible orbits must therefore be a periodic hybrid orbit,
meaning that {On(x0n, θ

0)}∞n=0 is a sequence of compatible periodic hybrid orbits.
If a = 1/2, b is a positive odd integer, x00 = r/2s, with s ≥ 1 and 1 ≤ r < 2s, then

a similar argument shows that {On(x0n, θ
0)}∞n=0 is a sequence of compatible periodic

hybrid orbits. Suppose a line starting at (x00, 0) with slope b
√
3

2a+b intersects a point

in R2 that would correspond to a lattice point of a lattice comprised of equilateral
triangles at scale k. If m,n, p, q, k ∈ Z, with k ≥ 1 and p, q ≤ 3k, then such a point
has the form (m + p/3k)u1 + (n + q/3k)u2. Then, using the equation for a line in
the plane, we find that(

n+
q

3k

) √3

2
=

b
√

3

2a+ b

(
m+

p

3k
+
n

2
+

q

2 · 3k
− r

2s

)
, (7)(

3kn+ q

3k

)
1

2
=

b

2a+ b

(
2s3km+ 2sp+ 2s−13kn+ 2s−1q − 3kr

3k2s

)
, (8)

2s−1(3kn+ q)(2a+ b) = b(2s3km+ 2sp+ 2s−13kn+ 2s−1q − 3kr). (9)

Since b and r are odd and a = 1/2, we see that the left-hand side of Equation (9)
is even and the right-hand side is not. Therefore, our assumption that such a point
corresponding to a lattice point at scale k laid on the line beginning at x00 = r/2s

with slope b
√
3

2a+b was incorrect. It follows that such a line emanating from x00 = r/2s

avoids all points in the boundary of Ω(KS0) having finite ternary expansions. By
Theorem 26, every orbit in the sequence of compatible orbits must therefore be a
periodic hybrid orbit, meaning that {On(x0n, θ

0)}∞n=0 is a sequence of compatible
periodic hybrid orbits. �

Example 28 (A sequence of compatible periodic hybrid orbits). In Figure 12, three
periodic hybrid orbits are displayed. These three orbits constitute the first three
terms in a sequence of compatible periodic hybrid orbits. If we choose x00 = c ∈ I
and θ00 to be an angle such that x00 connects with the midpoint of the lower one-
third interval on the side of Ω(KS0), we can see that O0(x00, θ

0
0) is a periodic hybrid

orbit. More importantly, there are elements of the footprint F0(x00, θ
0
0) with ternary

representations of type [lr, c]. This observation is key for constructing what we call
nontrivial polygonal paths of Ω(KS), a topic which is discussed in more detail in §5.

Example 29 (A sequence of compatible hook orbits). Let x00 ∈ I have a ternary
representation given by rl, which is a Cantor point of KS (in the sense of §2.5).
Such a point has a value of 3/4. Considering an orbit of Ω(KS0) with an initial
direction of π/6, the ternary representation of the basepoints at which the billiard
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Figure 12. Three examples of periodic hybrid orbits. These are
the first three elements of the sequence of compatible periodic hy-
brid orbits described in Example 28.

Figure 13. An example of a hook orbit. The same initial condi-
tion is used in each prefractal billiard.

ball path forms right angles with the sides of Ω(KS0) is of the type [c, lr]. This
is a degenerate periodic hybrid orbit, meaning that it doubles back on itself, and
the next orbit in the sequence of compatible periodic hybrid orbits has the initial
condition (x01, π/6) = (x00, π/6). Since the ternary representation of the basepoint of
f0(x00, π/6) is rc and θ00 = θ01 = π/6, it follows that the basepoint of f1(x01, π/6) is a
Cantor point. Then, still in the notation introduced in Remark 2, the basepoint of
f21 (x01, π/6) has a ternary representation of type [c, lr]. This same pattern is repeated
for every subsequent orbit in the sequence of compatible orbits. As a result, the
sequence of compatible orbits forms a sequence of orbits that is converging to a set
that is well defined. That is, such a set will be some path with finite length that is
effectively determined by the law of reflection in each prefractal approximation.

Such orbits are referred to as hook orbits for the fact that they appear to be
“hooking” into the Koch snowflake; see Figure 13.

Theorem 30. If every element xk00 ∈ F0(x00, θ
0
0) has a ternary representation of

type [lr, c], then there exists N ≥ 0 such that {On(x0n, θ
0)}∞n=N is a constant sequence

of compatible periodic hybrid orbits.

Proof. Recall that the orbit O0(x00, θ
0
0) can be unfolded in the billiard Ω(KSn). Each

element xknn of the footprint Fn(x0n, θ
0
n) of the compatible orbit On(x0n, θ

0
n) has a

ternary representation of type [lr, c]. Since there are finitely many c’s in such a
representation, there exists N such that the ternary representation of every element
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Figure 14. An eventually constant sequence of compatible peri-
odic hybrid orbits. We see that the initial basepoint x00 = 7/12 lies
on the middle third of the unit interval. The basepoint x01 of the
compatible initial condition (x01, π/3) has a ternary representation
of type [lr, ∅].

xkNN ∈ FN (x0N , θ
0
N ) (this being the footprint of a compatible orbit ON (x0N , θ

0
N ))

is of type [lr, ∅]. As a result, the sequence of compatible periodic hybrid orbits
{On(x0n, θ

0)}∞n=N is constant, since every basepoint of every orbit remains fixed for
every subsequent prefractal billiard Ω(KSM ), M ≥ N . �

Example 31 (A constant sequence of compatible periodic hybrid orbits). Consider
x00 = 7/12 in the base of the equilateral triangle. Such a value has a ternary
representation of type [lr, c]. Consider the initial condition (x00, π/3). The sequence
of compatible orbits {On(x0n, π/3)}∞n=1 is a constant sequence. This follows from
the fact that the ternary representation of x01 is rl. Moreover, the representation of
every basepoint of On(x0n, π/3) is lr. In Figure 14, we show the first three orbits in
this (eventually) constant sequence of compatible periodic hybrid orbits.

As of now, the only examples of constant sequences of compatible nondegenerate
periodic hybrid orbits we can provide are those for which the initial direction is
π/3. Of course, one can construct a constant sequence of compatible periodic hybrid
orbits, each with an initial direction of π/6 or π/2, but such orbits will be degenerate.

5. Nontrivial polygonal paths of Ω(KS). Consider a periodic hybrid orbit of

Ω(KS0). Each basepoint xk00 of a footprint F0(x00, θ
0
0) has a ternary representation

that indicates such a point never corresponds to a ternary point of a side. Hence,
the unfolding never hits a corner of any prefractal billiard Ω(KSn). As a result, we
formulate the following conjecture.

Conjecture 32. Let O0(x00, θ
0
0) be a periodic hybrid orbit of Ω(KS0). If the base-

points of the footprint F0(x00, θ
0
0) are dynamically ordered in such a way that the

type of ternary representation alternates between [c, lr] ∨ [cl, r] ∨ [cr, l] ∨ [lcr, ∅] and
[lr, ∅], then the corresponding sequence of compatible periodic hybrid orbits yields a
sequence of basepoints converging to an elusive limit point of the Koch snowflake
KS.

We know that this conjecture is true for some family of sequences of compatible
periodic hybrid orbits, as evidenced by the fact that a sequence of compatible hook
orbits and the sequence of compatible periodic hybrid orbits given in Figure 12
exhibit such a behavior. In Figure 15, we show exactly the points referred to in
Conjecture 32. In this particular case, such points are derived from the sequence of
compatible periodic hybrid orbits given in Figure 12.
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Zoomed AgainZoomed And yet again

Figure 15. A collection of basepoints from successive compatible
periodic hybrid orbits converging to an elusive limit point of KS.

As we can see from Figure 15, the sequences of Cantor points determined from
a sequence of compatible periodic hybrid orbits can be connected to form what we
call a nontrivial polygonal path of Ω(KS). Specifically, for every n ≥ 0, there exists

N ≤ n and a sequence of basepoints {xknn }Nn=0 such that for every j < N , x
kj
j

has a ternary representation of type [lr, ∅] and xkNN has a ternary representation of

type [c, lr] ∨ [cl, r] ∨ [cr, l] ∨ [lcr, ∅]. Then each pair {xkjj , x
kj+1

j+1 }, 0 ≤ j < N , can
be connected to form a line segment and, collectively, the segments form a path.
Then, limN→∞ xkNN is an elusive limit point of KS and the collection of segments{
x
kj
j x

kj+1

j+1

}∞
j=0

constitutes a nontrivial polygonal path of Ω(KS). We denote such

a path by N (x00, θ
0
0).

We next show how to construct two nontrivial polygonal paths that will connect
two elusive limit points of the Koch snowflake KS. Consider a sequence of compat-
ible periodic hybrid orbits {On(x0n, θ

0)}∞n=0 that determines a nontrivial polygonal

path. Let θ0 = θ0 + π be the angle made by a vector based at x10 when measured

relative to the fixed coordinate system and define x00 := x10. Then the sequence of

compatible hybrid periodic orbits {On(x0n, θ
0)}∞n=0 determines a nontrivial polygo-

nal path of KS. Denoting the nontrivial polygonal paths of {On(x0n, θ
0)}∞n=0 and

{On(x0n, θ
0)}∞n=0 by N (x00, θ

0) and N (x00, θ
0), respectively, we see that the con-

catenation N (x00, θ
0) ∪N (x00, θ

0) determines a path from one elusive point of KS
to another elusive limit point of KS.

As a result, if one is given the fact that an elusive limit point x0 ∈ KS is the
limit of a sequence of basepoints constituting the vertices of a nontrivial polygonal
path, then one can determine a path from x0 to another elusive limit point x1 ∈ KS
by following the path determined by the two nontrivial polygonal paths, each being
determined by the law of reflection.

6. Concluding remarks. We have seen two extremes: sequences of compatible
orbits that are (eventually) constant and sequences of compatible orbits with non-
trivial limiting behavior. Ultimately, we want to answer the following question:
Can one determine the shortest path between two points of the snowflake subject
to a well-defined collision in the boundary? Finding an answer to such a question
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amounts to determining a suitable law of reflection in the boundary KS. As we have
seen in the case of a constant sequence of compatible orbits, for certain initial con-
ditions, it is possible to determine a well-defined orbit of the Koch snowflake. In the
case of a sequence of compatible periodic hybrid orbits that determines a nontrivial
polygonal path, we have seen a way to connect two elusive limit points via two
nontrivial polygonal paths of finite length; cf. §5. We conjecture that such paths
constitute subsets of a well-defined orbit of Ω(KS). That is, once a suitable law of
reflection is determined, we expect a nontrivial polygonal path determined from a
sequence of compatible periodic hybrid orbits to be a subset of the corresponding
orbit.

We note that several of the geometric and topological properties of certain pos-
sible periodic orbits (or their footprints) of Ω(KS) are provided in [13] and [15],
along with some experimental evidence in support of a “fractal law of reflection”.

Understanding how a billiard ball reflects off of an elusive limit point is at the
heart of the ‘fractal billiards problem’. In general, fractal snowflakes constitute the
canonical examples of fractal billiards. One may perform a similar analysis with
similar results for the square snowflake. While not the prototypical examples of a
fractal billiard, the T -fractal and a Sierpinski carpet billiard also constitute fractal
billiard tables; see Figure 16. Each of these tables contain elusive limit points,
and in some ways may be more tractable than a snowflake billiard. Recent work
between the second author and Joe P. Chen in [1] extends the results of [2] with the
intention of understanding the billiard dynamics on a self-similar Sierpinski carpet
billiard table. By further understanding the nature of what are called nontrivial
line segments, one can determine orbits of a self-similar Sierpinski carpet that never
intersect any corners or sides of any deleted squares of any prefractal approximation,
save for those of the initial unit square. Of course, the problem is that such orbits
do intersect infinitely many elusive limit points of the self-similar Sierpinski carpet,
highlighting the core problem of determining dynamics on a fractal billiard table.

Taking a different perspective, the work in progress [14] seeks to understand the
nature of the ‘fractal flat surface’ by examining the sequence of Veech groups of
prefractal flat surfaces. By extending the work of [25], the authors hope to view the
prefractal flat surfaces S(KSn) as ‘rhombic origamis’, as opposed to the traditional
square tiled surfaces found in [25].

Approaching the problem of determining dynamics on fractal billiard tables from
various perspectives may eventually bring about a clearer picture of what should
constitute a true fractal billiard. We hope that our work will help lay the foundations
for this new subject and spark the interest of other researchers working on related
questions and who may provide the additional insights needed for solving these
difficult problems.

Acknowledgments. We would like to thank Eugene Gutkin for a helpful discus-
sion about rational billiards and the content of his article [6].
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