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Abstract. In this paper, we establish the solvability of martingale solutions

for the stochastic Navier-Stokes equations with Itô-Lévy noise in bounded and

unbounded domains in Rd, d = 2, 3. The tightness criteria for the laws of a
sequence of semimartingales is obtained from a theorem of Rebolledo as for-

mulated by Metivier for the Lusin space valued processes. The existence of

martingale solutions (in the sense of Stroock and Varadhan) relies on a gen-
eralization of Minty-Browder technique to stochastic case obtained from the

local monotonicity of the drift term.

1. Introduction. Martingale solutions provide a characterization of the space-
time statistical solutions for stochastic system. The concept of martingale solu-
tions approach for finite dimensional diffusion processes was pioneered in the works
of Stroock and Varadhan [35, 36] while this approach for some class of infinite-
dimensional problems in Lusin spaces was formulated in Metivier [22] (see also, [40]).
The stochastic Navier-Stokes equations (SNSEs) driven by Gaussian noise has been
extensively studied over the past decades (see, for instance, [41, 3, 10, 31, 20, 9, 33]).
For the history of the solvability of the deterministic Navier-Stokes equations, we
refer the reader to Ladyzhenskaya [18]. Stochastic partial differential equations
(SPDEs) driven by Lévy processes whose paths may contain random jump discon-
tinuities of arbitrary size occurring at arbitrary random times are now being used
in many different areas of applied sciences (see, [7, 16, 26]). Some of the earlier
work related to martingale problem and finite dimensional Lévy processes, see, for
example, [34, 14, 15, 12].

In this paper, we establish the existence of martingale solutions supported on
the set of all solutions of the Navier-Stokes equations perturbed by Gaussian and
Lévy noises. This study is motivated by practical engineering scenario where aero-
dynamic flow is often subjected to abrupt external disturbances due to structural
and environmental disturbances. We use the semimartingale formulation involving
the finite dimensional Galerkin approximation given by Xn = An+Mn where An is
a process with finite variation and Mn is a local martingale to obtain the tightness
criteria. From a theorem of Rebolledo as given by Metivier [22] (see, also [13]) for
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the Lusin space valued càdlàg processes we obtain the tightness of the laws Pn in
terms of the tightness of the processes An and CMnB. Here CMnB is the right con-
tinuous increasing process with paths of finite variation (Meyer process) associated
with Mn. We use the stochastic Minty-Browder argument to prove the continuity of
the martingale on path space. Similar idea has been used for SPDEs with Gaussian
noise in [22], SNSEs and stochastic magneto-hydrodynamic systems with Gaussian
noise in Sritharan [31], Sritharan and Sundar [32] respectively. Since the sum of
Stokes operator and inertia term are not globally monotone, a local monotonicity
result to prove the existence of strong solutions for 2D stochastic Navier-Stokes
equation perturbed by Gaussian noise has been devised in Menaldi and Sritharan
[20]. By making use of the stochastic Minty-Browder argument involving the lo-
cally monotone operators, we prove the existence of martingale solutions for SNSEs
with multiplicative Itô-Lévy noises in bounded and unbounded domains. Using the
classical Yamada-Watanabe construction, we prove the uniqueness of the laws with
suitable moment condition in d = 3. The recent paper Dong and Zhai [6] studies
the existence of martingale solution for SNSEs with multiplicative jump noise co-
efficients in bounded domains. The tightness criteria used for probability measures
in [6] is different from ours in the sense that we have utilized Metivier’s technique
in the Lusin spaces. Since we have applied the Minty stochastic lemma to avoid
the need of compact embeddings in unbounded domain, this paper addresses an
interesting problem even with additive noises in unbounded domain (see, Remark
4.2) in contrast to [6].

The paper is organized as follows. In section 2, we state the main assumptions
of the noise coefficients and prove the local monotonicity of the drift term A + B(·)
for any d ≥ 2. In section 3, we establish higher order moment estimates of order
p ≥ 2 for the Galerkin approximations with approximate laws Pn being defined on
D(0, T ;V′) and show that these laws converge weakly to a probability measure P. In
section 4, we prove the well-posedness of the martingale problem by first showing
that the weak limit P is indeed a martingale solution for the SNSEs using the Minty
stochastic lemma. We then analyze these results in unbounded domain and prove
the uniqueness of the laws.

2. Navier-Stokes equations with Itô-Lévy noise. Let O ⊂ Rd, d = 2, 3 be
an arbitrary, possibly unbounded, open domain with smooth boundary ∂O if the
domain has a boundary. Let u = u(x, t) and p = p(x, t) denote the velocity and
pressure fields and g = g(·, ·) : O × (0, T ) → Rd is an external body force. Let us
consider the Navier-Stokes model perturbed by the Gaussian as well as Lévy type
stochastic forces as follows:

du + (−ν∆u + u · ∇u +∇p)dt = gdt+ σ(t,u)dW

+

∞∑
k=1

∫
0<|zk|Z<1

φk
(
u(x, t−), zk

)
π̃k(dt, dzk) (2.1)

+

∞∑
k=1

∫
|zk|Z≥1

ψk
(
u(x, t−), zk

)
πk(dt, dzk) in O × (0, T )

with the incompressibility condition

∇ · u = 0 in O × (0, T ), (2.2)
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the non-slip boundary condition and the initial condition respectively:

u = 0 on ∂O × (0, T ), u(x, 0) = u0(x) in O. (2.3)

One may also require the far-field condition

u(x, t)→ 0 as |x| → ∞ if O is unbounded.

In (2.1), the parameter ν is the kinematic viscosity and W(·) represents a space-
time Gaussian noise term modelled as a Hilbert-space valued Wiener process that
is independent of the compensated Poisson measure π̃k(dt, dzk) = πk(dt, dzk) −
dtµk(dzk) for all k = 1, 2 · · · , where µk(·) = E(πk(1, ·)) is the intensity measure.

Now we proceed to state the main results of this paper. Let Ω̃ = D(0, T ;V′)J ∩
L∞(0, T ;H)w∗ ∩ L2(0, T ;V)w (see, before section 3.1 for the precise definitions of

the topologies) be the path space with ω ∈ Ω̃ denoting a generic point in Ω̃, where
D(.; .) is the class of càdlàg functions from [0, T ] into V′. Càdlàg functions are right
continuous and have left limits at any point t ∈ [0, T ] (and for more details on

this space, see, [7, 25]). Let F̃ be the σ-algebra of Borel subsets of the Lusin

space Ω̃ endowed with supremum of the topologies. Let ξ be the mapping from

[0, T ] × Ω̃ → V′ defined by ξ(t, ω) := ω(t) and let F̃t be the canonical filtration

generated by the functions ξ(t, ω) on Ω̃, that is, F̃t = σ{ξ(s, ω) : 0 ≤ s ≤ t} for
all t ∈ [0, T ]. We call the new measure P such that P ◦ u−1 = P is the law of the

processes u defined on (Ω̃, F̃ , F̃t).

Definition 2.1 (Martingale Problem). Let L f(·) be the generator as defined in
(2.17). Then given an initial measure P on H, a solution to L f -martingale problem

is a probability measure P : B(Ω̃)→ [0, 1] on (Ω̃, F̃ , F̃t) such that P{ξ(0) = u0} = 1
and the process

Mf
t := f(ξ(t))− f(ξ(0))−

∫ t

0

L f(ξ(s))ds, with f ∈ D(L )

is a R-valued locally square integrable (Ω̃, F̃ , F̃t,P)-local càdlàg martingale.

The following is the first main theorem concerning the existence of martingale
solutions.

Theorem 2.1. Let O be an open domain in Rd, d = 2, 3. Suppose the noise coeffi-
cients σ and φk, ψk, k = 1, 2 · · · satisfy Assumptions 2.1 and 2.2 respectively. Then
for a given initial probability measure P on H satisfying

∫
H |x|

2dP(x) <∞, there
exists a martingale solution to the equation (2.1)(or the abstract form (2.10)).

The uniqueness of martingale solutions is the uniqueness in the sense of probabil-
ity laws. The solution of (2.1) is unique in the sense of probability law if whenever
u(t) and v(t), t ≥ 0 are two solutions such that the probability laws of u0 and v0

are the same, then the laws of u and v are the same. The pathwise uniqueness holds
for (2.1) if U(t) = {u(t),u0,Q, πk; t ≥ 0, k ≥ 1} and U′(t) = {u′(t),u′0,Q′, π′k; t ≥
0, k ≥ 1} are any two solutions defined on a same probability space (Ω,F ,Ft, P ),
then u0 = u′0,Q = Q′ and πk = π′k imply P{U(t) = U′(t); t ≥ 0, k ≥ 1} = 1.

The existence of a solution to the martingale problem is equivalent to that of
a weak solution to the stochastic differential equations (see, [22]). Hence one may
apply the Yamada-Watanabe construction ([42], see also [16]) to deduce that the
existence of a weak solution together with the pathwise uniqueness property imply
the uniqueness in law.
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Thus, in essence we only need to prove the following result concerning the path-
wise uniqueness of solutions for the system (2.1).

Theorem 2.2. Let O be an open domain in Rd, d = 2, 3. Let the noise coefficients
σ and φk, ψk, k = 1, 2 · · · satisfy Assumptions 2.1 and 2.2 respectively. Let u,v ∈
D(0, T ;V′)∩L∞(0, T ;H)∩L2(0, T ;V) be the two paths defined on a same probability
space (Ω,F ,Ft, P ) with same Q-Wiener process W and Poisson measure πk, k =
1, 2 · · · satisfying the system (2.1). Then there exist positive constants Cν and C̄
such that

E
(
|u(t)− v(t)|2 exp

{
− Cν

∫ t

0

‖v(s)‖4/(4−d)ds
})

(2.4)

≤ exp(C̄T )E|u(0)− v(0)|2.

If the initial data u(0) = v(0) = u0, then

(i) For d = 2, the solution u is pathwise unique, that is, u(t) = v(t), P -a.s.
(ii) For d = 3, the solution u is pathwise unique under the additional condition

E
∫ T

0
‖v(s)‖4ds <∞.

The proofs of Theorem 2.1 and 2.2 are given in section 4.

2.1. Assumptions and semimartingale formulation. Now we proceed for the
semimartingale framework of the stochastic Navier-Stokes system (2.1)-(2.3) by
making use of the following conventional notations. Let us denote V = {v ∈
C∞0 (O) : ∇ · v = 0}. Let H and V be the completion of V in L2(O) and H1(O)
norms respectively. In the case of bounded domains, we then get

H := {v ∈ L2(O;Rd) : ∇ · v = 0 v · n|∂O = 0} (2.5)

with norm ‖v‖H :=
( ∫
O |v|

2dx
)1/2

= |v|, where n is the outward normal to ∂O and

V := {v ∈ H1
0(O;Rd) : ∇ · v = 0} (2.6)

with norm ‖v‖V :=
( ∫
O |∇v|2dx

)1/2
= ‖v‖. The inner product in the Hilbert space

H is denoted by (·, ·) and the induced duality, for instance between the spaces V
and its dual V′, by 〈·, ·〉.

Let PH : L2(O) → H be the Helmholtz-Hodge (orthogonal) projection, then
define the Stokes operator

A : D(A)→ H with Av = −PH∆v, (2.7)

where D(A) = V ∩ H2(O) = {v ∈ H1
0(O) ∩ H2(O) : ∇ · v = 0} and the nonlinear

operator

B : D(B) ⊂ H× V→ H with B(u,v) = PH(u · ∇v). (2.8)

Note that with the use of the Gelfand triple V ⊂ H = H′ ⊂ V′, we may consider
A as the mapping from V into V′. Besides, setting u = (ui),v = (vi) and w = (wi),
we can write

〈Au,w〉 = ν
∑
i,j

∫
O
∂iuj∂iwjdx, where ∂iuj =

∂uj
∂xi

.

Define trilinear form b(·, ·, ·) : V× V× V→ R by the relation

b(u,v,w) =
∑
i,j

∫
O
ui∂ivjwjdx
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whence we can define the bilinear operator B(·, ·) : V× V→ V′ such that

〈B(u,v),w〉 = b(u,v,w), ∀ u,v,w ∈ V.

Integrating by parts in the previous equality, we also get

b(u,v,w) = −b(u,w,v) and b(u,v,v) = 0, ∀ u,v,w ∈ V. (2.9)

According to Helmholtz decomposition L2(O) admits an orthogonal decomposi-
tion of a sum of two non-trivial subspaces such that L2(O) = H(O)⊕H⊥(O), where
the space H⊥ is characterized by H⊥(O) = {u ∈ L2(O) : u = ∇p, p ∈ H1(O)}.

Thus, taking into account of all the preceding observations along with the pro-
jection PH applied to the system (2.1), we arrive at

u(t) = u0 +

∫ t

0

(
− νAu(s)−B(u(s)) + g(s) (2.10)

+

∞∑
k=1

∫
|zk|≥1

ψk
(
u(s), zk

)
µk(dzk)

)
ds+ Mt in Ω̃

u(0) = u0 in H

where B(u) = B(u,u), g ∈ L2(0, T ;V′) and the local martingale

Mt =

∫ t

0

σ(s,u(s))dW(s) +

∫ t

0

∞∑
k=1

∫
|zk|<1

φk
(
u(s−), zk

)
π̃k(ds, dzk)

+

∫ t

0

∞∑
k=1

∫
|zk|≥1

ψk
(
u(s−), zk

)
π̃k(ds, dzk). (2.11)

Let Q be a positive, symmetric and trace class operator on H. Then there is an or-
thonormal basis {ek} of H consisting of eigenvectors of Q such that Qek = λkek, k ∈
N. Here λk is the eigenvalue corresponding to {ek} which is real and positive with

tr(Q) =

∞∑
k=1

λk <∞ and Q1/2v =

∞∑
k=1

√
λk(v, ek)ek, v ∈ H.

Let (Ω,F , P ) be a probability space equipped with an increasing family of sub-
sigma fields {Ft}0≤t≤T of F satisfying (i) F0 contains all elements E ∈ F with
P (E) = 0 (ii) Ft = Ft+ =

⋂
s>t Fs for 0 ≤ t ≤ T. Then

Definition 2.2. A stochastic process {W(t) : 0 ≤ t ≤ T} is said to be a H-
valued {Ft}-adapted Wiener process with covariance operator Q if for each non-
zero h ∈ H, |Q1/2h|−1(W(t), h) is a standard one-dimensional Wiener process and
for each h ∈ H, (W(t), h) is a Ft−martingale.

The stochastic process {W(t) : 0 ≤ t ≤ T} is a H-valued Wiener process with
covariance Q if and only if for arbitrary t, the process W(t) can be expressed
as W(t) =

∑∞
k=1

√
λkβk(t)ek, where βk(t), k ∈ N are independent one dimensional

Brownian motions on (Ω,F , P ) and {ek} are the orthonormal basis functions, as ex-
plained above, of H(see, [16], Page 93, Definition 3.2.1 and Theorem 3.2.2). Besides,
the Q-Wiener process W(t) satisfies E(W(t)) = 0 and Cov(W(t)) = tQ, t ≥ 0.

We denote by LHS , the space of all bounded linear operators S : H → H such
that

∑∞
k=1 |SQ1/2ek|2 < ∞, where {ek} is an orthonormal basis in H and ‖ · ‖LHS



360 KUMARASAMY SAKTHIVEL AND SIVAGURU S. SRITHARAN

be the norm on LHS which is given by

∞∑
k=1

|SQ1/2ek|2 =

∞∑
k=1

(Q1/2S∗SQ1/2ek, ek) = tr(Q1/2S∗SQ1/2)

= tr(SQS∗) := ‖S‖2LHS
.

The Gaussian noise coefficient mapping σ : [0, T ] × H → LHS(H) is measurable
from ([0, T ]×H,B([0, T ]×H)) into (LHS(H),B(LHS(H)) satisfies the following:

Assumption 2.1. [H1] For all t ∈ [0, T ], there is a positive constant Ñ1 such that

‖σ(t,u)− σ(t,v)‖2LHS
≤ Ñ1|u− v|2, ∀u,v ∈ H. (2.12)

[H2] For all t ∈ [0, T ], there is a positive constant Ñ2 satisfying the growth condition

‖σ(t,u)‖2LHS
≤ Ñ2(1 + |u|2), ∀u ∈ H. (2.13)

Next we state the assumptions on the jump noise coefficients. Let Z be a sepa-
rable Banach space and L(t)t≥0 be a Z−valued Lévy process with jump ∆L(t) :=
L(t)− L(t−) at t ≥ 0, then

πk([0, t],Γ) = #{s ∈ [0, t] : ∆L(s) ∈ Γ}, where Γ ∈ B(Z\{0})

is the Poisson random measure or jump measure associated with the Lévy process
L(t). Here B(Z\{0}) is the Borel σ-field, πk(dt, dzk) is the random measure de-
fined on (R+ × (Z\{0}),B(R+ × (Z\{0}))), and µk(·) is the intensity measure on
((Z\{0}),B(Z\{0}).) Then the compensated Poisson random measure is defined
by π̃k(dt, dzk) = πk(dt, dzk) − dtµk(dzk), for all k = 1, 2 · · · , where dtµk(dzk) is
the compensator of the Lévy process L(t) with Lesbegue measure dt. The intensity
measure µk(·) on Z satisfies the conditions µk({0}) = 0, for all k = 1, 2, · · · and

∞∑
k=1

∫
Z

(1 ∧ |zk|2)µk(dzk) < +∞ and (2.14)

∞∑
k=1

∫
|zk|≥1

|zk|pµk(dzk) < +∞, ∀p ≥ 1.

The process
( ∫
|zk|<1

φk
(
u(t−), zk

)
π̃k(t, dzk), t ≥ 0, k ≥ 1

)
in (2.1) describing the

sum of small jumps of size less than 1 is the compensated Poisson process while the
process

( ∫
|zk|≥1

ψk
(
u(t−), zk

)
πk(t, dzk), t ≥ 0, k ≥ 1

)
describing the large jumps of

size greater than or equal to 1 in (2.1) is a compound Poisson process (see, [2]).
The jump noise coefficients mappings φk, ψk : H × Z → H, k = 1, 2, · · · are

measurable from (H×Z,B(H×Z)) into (H,B(H)) satisfy the following

Assumption 2.2. [H3] For all t ∈ [0, T ], there is a positive constant N2 such that

∞∑
k=1

∫
|zk|<1

|φk(u, zk)− φk(v, zk)|2µk(dzk) (2.15)

+

∞∑
k=1

∫
|zk|≥1

|ψk(u, zk)− ψk(v, zk)|2µk(dzk) ≤ N2|u− v|2, ∀u,v ∈ H.



STOCHASTIC NAVIER-STOKES EQUATIONS WITH LÉVY NOISE 361

[H4] For all p ≥ 1 and t ∈ [0, T ], there is a positive constant N3 satisfying the
growth condition

∞∑
k=1

∫
|zk|<1

|φk(u, zk)|pµk(dzk) (2.16)

+

∞∑
k=1

∫
|zk|≥1

|ψk(u, zk)|pµk(dzk) ≤ N3(1 + |u|p), ∀u ∈ H.

Next we state and prove some of the results which are used frequently in the rest
of the paper. If Tt is the transition semigroup of the Itô-Lévy process u(t) defined
on a complete probability space (Ω,Ft, P ), then the generator L of u(t) can be
defined on functions f(·) : H→ R by

L f = lim
t↓0

Ttf − f
t

for each f ∈ D(L ),

where

D(L ) := {f : H→ R such that lim
t↓0

Ttf − f
t

exists }.

However, in the following definition we give the formal generator for some class
of test functions.

Definition 2.3 (Formal Generator). For f ∈ D(L ), the formal generator L f is
given by

L f(u) = −
〈
νAu + B(u)− g,

∂f

∂u

〉
+

1

2
tr
(
σ(t,u)Qσ∗(t,u)

∂2f

∂u2

)
(2.17)

+

∞∑
k=1

∫
|zk|<1

{
f(u + φk(u, zk))− f(u)−

〈
φk(u, zk),

∂f

∂u

〉}
µk(dzk)

+

∞∑
k=1

∫
|zk|≥1

{
f(u + ψk(u, zk))− f(u)

}
µk(dzk), ∀u ∈ D(A).

Finite dimensional Lévy generator can be found in [29, 2] and for an infinite
dimensional case, see, [26]. Infinite dimensional Lévy- Khintchine ([38]) represen-
tation is an another form of expressing such generators. As an example for the
functions f ∈ D(L ), one may consider the following:

Remark 2.1. The test functions f(·) of the form

f(u) := ϕ(〈e1,u〉, 〈e2,u〉, · · · , 〈em,u〉), u ∈ H (2.18)

where ϕ(·) : Rm → R is a smooth function with compact support in Rm, ek ∈
D(A), k = 1, 2, · · · ,m.

Lemma 2.1 (Burkholder-Davis-Gundy, [27, 26]). For every fixed p ≥ 1, there is
a constant Cp ∈ (0,∞) such that for every real-valued square integrable càdlàg
martingale Mt with M0 = 0, and for every T ≥ 0,

C−1
p E[M]

p/2
T ≤ E sup

t∈[0,T ]

|Mt|p ≤ CpE[M]
p/2
T , (2.19)

where [M]t is the quadratic variation of Mt and the constant Cp does not depend
on the choice of Mt.
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Lemma 2.2 (Gagliardo-Nirenberg, [5]). Let O ⊂ Rd and v ∈W1,p(O), p ≥ 1. Then
for every fixed numbers q, r ≥ 1, there exists a constant N > 0 such that

‖v‖Lr(O) ≤ Nd,p,q‖∇v‖λLp(O)‖v‖
1−λ
Lq(O), λ ∈ [0, 1] (2.20)

where the numbers p, q, r and λ satisfy the relation

λ =
(1

q
− 1

r

)(1

d
− 1

p
+

1

q

)−1

.

The particular cases of Lemma 2.2 are the well known inequalities, due to La-
dyzhenskaya ([17], Lemmas 1,2 and 3, Page 8-10), which are given below.

Lemma 2.3. For v ∈ C∞0 (Rd), d = 2, 3, there exists a constant L such that

‖v‖4L4(Rd) ≤ L‖v‖4−dL2(Rd)
‖∇v‖dL2(Rd), (2.21)

where L = 2, 4 respectively for d = 2, 3 and

‖v‖6L6(R3) ≤ 48‖∇v‖6L2(R3). (2.22)

Note that Lemma 2.3 holds true for all functions v ∈ H1
0(O). From (2.21), the

nonlinear term B(·) satisfies the estimate

‖B(v)‖V′(O) ≤ ‖v‖2L4(O) ≤ L|v|
2−(d/2)‖v‖d/2, ∀v ∈ V, d = 2, 3. (2.23)

Next we prove the local monotonicity of the operator Θ(u) + λu, where Θ(u) :=
νAu + B(u) and λ > 0 :

Lemma 2.4. For a given ρ > 0 and p > d, let Br denote the ball Br = {v ∈
V : ‖v‖Lp(O) ≤ ρ} and Θ(·) be the nonlinear operator as above on V. Then for any
u ∈ V,v ∈ Br and w = u−v, there exists a λ > 0 such that the operator Θ(u)+λu
is monotone in Br :

〈Θ(u)−Θ(v),w〉+ λ|w|2 ≥ ν

2
‖w‖2, (2.24)

where λ = Cp,d,νρ
2p/(p−d) and the constant Cp,d,ν is defined below.

Proof. Let us first note that 〈Aw,w〉 = −〈∆w, PHw〉 = ‖w‖2. From the bilinear
and trilinear forms defined in (2.9), we have

〈B(u),w〉 = −b(u,w,u) = −b(u,w,w)− b(u,w,v) = −b(u,w,v).

Similarly 〈B(v),w〉 = −b(v,w,v) so that

〈B(u)−B(v),w〉 = −b(w,w,v) = −〈B(w),v〉,∀u ∈ V and v ∈ Br.
If we apply Hölder’s inequality with exponents q = 2, r = 2p/(p− 2) and fixed p,

|〈B(u)−B(v),w〉| ≤ ‖w‖L2p/(p−2)(O)‖w‖‖v‖Lp(O);

but the Gagliardo-Nirenberg inequality (2.20) with exponents p̃ = q̃ = 2 and r̃ =
2p/(p− 2), further gives

‖w‖L2p/(p−2)(O) ≤ Nd,2,2‖w‖d/p|w|1−(d/p).

The inequality

ab ≤ ν a
m

2
+

bl

l(νm2 )l/m
for any a, b ≥ 0

with l = 2p/(p− d) and m = 2p/(p+ d) leads to

|〈B(u)−B(v),w〉| ≤ ν

2
‖w‖2 + Cp,d,ν |w|2‖v‖2p/(p−d)

Lp(O) , (2.25)
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where

Cp,d,ν =
(Nd,2,2)2p/(p−d)(p− d)

2p
(
pν/(p+ d)

)(p+d)/(p−d)
.

Therefore,

〈Θ(u)−Θ(v),w〉 ≥ ν

2
‖w‖2 − Cp,d,νρ2p/(p−d)|w|2. (2.26)

This completes the proof.

The following lemma is useful in proving the main result.

Lemma 2.5. Let Cµ =
∑∞
k=1

∫
|zk|≥1

µk(dzk) < ∞ and un → u strongly in

L2(0, T ;H). Then Īn :=
∫ T

0

(∑∞
k=1

∫
|zk|≥1

ψk(un(t), zk)µk(dzk),un(t)
)
dt converges

to the integral I :=
∫ T

0

(∑∞
k=1

∫
|zk|≥1

ψk(u(t), zk)µk(dzk),u(t)
)
dt.

Proof. Consider the integral

In := Īn − I

=

∫ T

0

( ∞∑
k=1

∫
|zk|≥1

ψk(un(t), zk)µk(dzk),un(t)− u(t)
)
dt

+

∫ T

0

( ∞∑
k=1

∫
|zk|≥1

(
ψk(un(t), zk)− ψk(u(t), zk)

)
µk(dzk),u(t)

)
dt

:= În + Ĩn.

Note that

|În| ≤
∫ T

0

∣∣ ∞∑
k=1

∫
|zk|≥1

ψk(un(t), zk)µk(dzk)
∣∣|un(t)− u(t)|dt

≤
(∫ T

0

∣∣ ∞∑
k=1

∫
|zk|≥1

ψk(un(t), zk)µk(dzk)
∣∣2dt)1/2(∫ T

0

|un(t)− u(t)|2dt
)1/2

≤
(∫ T

0

Cµ

∞∑
k=1

∫
|zk|≥1

|ψk(un(t), zk)|2µk(dzk)dt
)1/2(∫ T

0

|un(t)− u(t)|2dt
)1/2

≤
√
CµN3

(
T +

∫ T

0

|un(t)|2dt
)1/2(∫ T

0

|un(t)− u(t)|2dt
)1/2

→ 0

as n→∞ since the first integral is finite and the second integral tends to zero due

to the strong convergence of un → u in L2(0, T ;H). Estimating the integral Ĩn, we
get

|Ĩn| ≤
(∫ T

0

Cµ

∞∑
k=1

∫
|zk|≥1

|ψk(un(t), zk)− ψk(u(t), zk)|2µk(dzk)dt
)1/2

×
(∫ T

0

|u(t)|2dt
)1/2

≤
√
CµN2

(∫ T

0

|un(t)− u(t)|2dt
)1/2(∫ T

0

|u(t)|2dt
)1/2

→ 0 as n→∞,

due to the similar reasoning as before. Thus, the conclusion of the lemma follows.
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2.2. Quadratic variation and Meyer process of the martingale. Let u be
an adapted process in a stochastic basis (Ω,Ft, P ) with paths in D(0, T ;V′) ∩
L∞(0, T ;H) ∩ L2(0, T ;V). Let M 2

loc(H) be the class of all locally square integrable
H-valued martingales Mt = (M(t), t ≥ 0) with respect to Ft. The following lemma
establishes the quadratic variation of the martingale Mt given in (2.11). For more
details regarding quadratic variation and Meyer process, one can refer to Chapter
I of [22] and also [26].

Lemma 2.6 (Quadratic Variation Process). Let Mt ∈ M 2
loc(H). Then there

exists an increasing adapted càdlàg process JMKt with JMK0 = 0 such that

JMKt =

∫ t

0

σ(s,u(s))Qσ∗(s,u(s))ds

+

∫ t

0

∞∑
k=1

∫
|zk|<1

φk ⊗ φk(u(s−), zk)πk(dzk, ds)

+

∫ t

0

∞∑
k=1

∫
|zk|≥1

ψk ⊗ ψk(u(s−), zk)πk(dzk, ds). (2.27)

Proof. Let {ei} be an orthonormal basis in H. Then the martingale Mt has a rep-
resentation Mt =

∑∞
i=1(Mt, ei)ei, ∀ t ≥ 0. Setting Mi

t = (Mt, ei), we get that

E|Mt|2 = E
∞∑
i=1

(Mi
t)

2 =

∞∑
i=1

E(Mi
t)

2 <∞

whence Mi
t ∈M 2

loc(R),∀i.
Since the quadratic variation process has to satisfy the identity

(
JMKtei, ej

)
=

[Mi,Mj ]t, we define the processes JMKt by (see, [22])

JMKt =

∞∑
i,j=1

[Mi,Mj ]tei ⊗ ej , (2.28)

(equivalently,
(
JMKtp,q

)
=
∑∞
i,j=1[Mi,Mj ]t(ei,p)(ej ,q),p,q ∈ H), where {ei ⊗

ej}, i, j = 1, 2 · · · is an orthonormal basis in H⊗̂H which denotes the space H ⊗ H
completed with respect to the Hilbert-Schmidt norm. The relation (2.28) can be
written as

JMKt =

∞∑
i,j=1

{
[Mi,Mj ]ct +

∑
0≤s≤t

∆[Mi,Mj ]s
}
ei ⊗ ej , (2.29)

where we decomposed the infinite matrix valued process [Mi,Mj ]t into continuous
and jump parts of the martingale Mt. Now we note that

[Mi,Mj ]ct =

∞∑
k,l=1

∫ t

0

(
σ(s,u)Q1/2ek, ei

)(
σ(s,u)Q1/2el, ej

)
d[βk, βl]s

=

∞∑
k,l=1

∫ t

0

(
ek, (σ(s,u)Q1/2)∗ei

)(
el, (σ(s,u)Q1/2)∗ej

)
δklds

=

∫ t

0

(
(σ(s,u)Q1/2)(σ(s,u)Q1/2)∗ei, ej

)
ds, (2.30)

where βk, k = 1, 2, · · · are real-valued independent Brownian motions defined on
(Ω,Ft, P ) and the last equality follows from Parseval’s identity.
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Since the quadratic covariation process occur only at points where both processes
have jumps, we have

∑
0≤s≤t ∆[Mi,Mj ]s =

∑
0≤s≤t ∆Mi

s∆Mj
s.

Noting that L(t) is a Z-valued Lévy process, define Z0 := {z ∈ Z\{0} : |z| < 1},
χ1(s) := χ{∆Lk(s)∈Z0} and Z̄0 := {z ∈ Z\{0} : |z| ≥ 1}, χ2(s) := χ{∆Lk(s)∈Z̄0}.

Recalling the compensated measure π̃k(dt, dz) = πk(dt, dzk)−dtµk(dzk), for all k =
1, 2 · · · , we define the corresponding compensated integral as

It :=

∫ t

0

∞∑
k=1

∫
|zk|<1

φk(u(s−), zk)π̃k(ds, dzk).

Then ∑
0≤s≤t

∆Is =

∫ t

0

∞∑
k=1

∫
|zk|<1

φk(u(s−), zk)πk(ds, dzk)

=
∑

0≤s≤t

∞∑
k=1

φk(u(s),∆Lk(s))χ1(s).

Moreover,
∑

0≤s≤t |∆Is|2 <∞, P −a.s. Indeed, for m > 0, define the stopping time

τm = inf{t ≥ 0 :

∫ t

0

∞∑
k=1

∫
|zk|<1

|φk(u(s−), zk)|2πk(dzk, ds) ≥ m}

so that τm →∞ as m→∞. Then

E
∑

0≤s≤t∧τm

|∆Is|2 = E
∑

0≤s≤t∧τm

∞∑
k=1

|φk(u(s),∆Lk(s))|2χ1(s)

= E
∫ t

0

∞∑
k=1

∫
|zk|<1

|φk(u(s−), zk)|2πk(dzk, ds)

= E
∫ t∧τm

0

∞∑
k=1

∫
|zk|<1

|φk(u(s−), zk)|2µk(dzk)ds ≤ C,

where the finiteness follows from Assumption 2.2 on φk, k ≥ 1 and energy estimates
proved in the next section. It shows that P

(∑
0≤s≤t |∆Is|2 ≥ m

)
≤ C/m → 0 as

m→∞.
Noting that ei ⊗ ej , i, j = 1, 2 · · · is an orthonormal basis in H⊗̂H, we have∑

0≤s≤t

∆Mi
s∆Mj

s

=
∑

0≤s≤t

[ ∞∑
k=1

(
φk(u(s),∆Lk(s))χ1(s), ei

)(
φk(u(s),∆Lk(s))χ1(s), ej

)
+

∞∑
k=1

(
ψk(u(s),∆Lk(s))χ2(s), ei

)(
ψk(u(s),∆Lk(s))χ2(s), ej

)]
=

∑
0≤s≤t

∞∑
k=1

(
φk ⊗ φk(u(s),∆Lk(s))χ1(s), ei ⊗ ej

)
+
∑

0≤s≤t

∞∑
k=1

(
ψk ⊗ ψk(u(s),∆Lk(s))χ1(s), ei ⊗ ej

)
.
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Thus, we rewrite the sum as follows∑
0≤s≤t

∆Mi
s∆Mj

s (2.31)

=

∫ t

0

∞∑
k=1

∫
|zk|<1

(
φk ⊗ φk(u(s−), zk), ei ⊗ ej

)
πk(ds, dzk)

+

∫ t

0

∞∑
k=1

∫
|zk|≥1

(
ψk ⊗ ψk(u(s−), zk), ei ⊗ ej

)
πk(ds, dzk).

Combining the equations (2.29)-(2.31), one can conclude the proof.

Since Mt ∈M 2
loc(H), it should be noted by the Doob-Meyer decomposition (see,

[21, 26]) that there exits a unique predictable process the so-called Meyer Process
denoted by � M �t such that (JMKt− � M �t) is a local martingale. Indeed,
we will have the following interesting observation.

Remark 2.2. Since from the Remark 2.1, {ei} is an orthonormal basis in H and
(ρ, ei) = ρi ∀i, so we can take fi(ρ) = ρi for some i. Now for fi, fifj ∈ D(L ), let
us set

b(ρ) = L f(ρ), a(ρ) = L
(
f(ρ)⊗ f(ρ)

)
− 2f(ρ)⊗L f(ρ) (2.32)

and the stopping time τm = inf{t : |u(t)| ≥ m}. Let u be the solution of (2.1).
Applying the Dynkin formula for all f(u) ∈ D(L ) with the stopping time τm, we
get that

f(u(t ∧ τm))− f(u(0))−
∫ t∧τm

0

L f(u(s)ds is a local martingale.

Indeed, taking f(u) = u, we have

u(t ∧ τm) = u(0) +

∫ t∧τm

0

b(u(s))ds+ Mt∧τm , (2.33)

where Mt∧τm is a local martingale. Applying the same for u⊗ u, we get

u⊗ u(t ∧ τm)

=u⊗ u(0) + 2

∫ t∧τm

0

u⊗ b(u(s))ds+

∫ t∧τm

0

a(u(s))ds+ M̃t∧τm , (2.34)

where M̃t∧τm is a local martingale. But the integration by parts formula applied
to u⊗ u together with (2.33), we also get

u⊗ u(t ∧ τm) = u⊗ u(0) + 2

∫ t∧τm

0

u⊗ b(u(s))ds (2.35)

+2

∫ t∧τm

0

u(s)⊗ dMs + JMKt∧τm ,

where JMKt∧τm denotes the process [Mi,Mj ]t∧τm . Thus taking expectation in (2.35)
and comparing it with (2.34), we see that

JMKt∧τm −
∫ t∧τm

0

a(u(s))ds, is a local martingale. (2.36)

Now we calculate the Meyer process associated with the martingale Mt.
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Lemma 2.7 (Meyer Process). Let Mt ∈M 2
loc(H). Then there exists a uniquely

defined predictable increasing process �M�t with �M�0= 0 such that

�M�t =

∫ t

0

σ(s,u(s))Qσ∗(s,u(s))ds

+

∫ t

0

∞∑
k=1

∫
|zk|<1

φk ⊗ φk(u(s), zk)µk(dzk)ds

+

∫ t

0

∞∑
k=1

∫
|zk|≥1

ψk ⊗ ψk(u(s), zk)µk(dzk)ds. (2.37)

Proof. Let {ei} be an orthonormal basis in H with each ei ∈ D(A), i = 1, 2, · · · so
that u =

∑∞
i=1 ζiei. From (2.36), the Meyer process can be defined as � M �t=∫ t

0
a(u(s))ds. Now for f ∈ D(L ) and h ∈ H, note that

(
∂f
∂u , h

)
=
∑∞
i=1

∂f
∂ζi

(ei, h)

and ∂2f
∂u2 (h, h) =

∑∞
i,j=1

∂2f
∂ζiζj

(ei, h)(ej , h). Setting F (u) := νAu + B(u) − g, we

write the generator in Definition 2.3 as follows

L f = −
∞∑
i=1

F̃i
∂f

∂ζi
+

1

2

∞∑
i,j=1

∂2f

∂ζiζj

(
σ(t,u)Qσ∗(t,u)ei, ej

)
(2.38)

+

∞∑
k=1

∫
|zk|<1

{
f(ζ + φk(u, zk))− f(ζ)−

∞∑
i=1

∂f

∂ζi
φ̃ik

}
µk(dzk)

+

∞∑
k=1

∫
|zk|≥1

{
f(ζ + ψk(u, zk))− f(ζ)

}
µk(dzk),

where F̃i = (F (u), ei) and φ̃ik =
(
φk(u(t), zk), ei

)
. In particular, taking fp(ζ) = ζp

and fq(ζ) = ζq, we obtain that

f(ζ)⊗L f(ζ) = J, (2.39)

where

J = −ζ ⊗ F̃ +

∞∑
k=1

∫
|zk|<1

[
ζ ⊗ φk(u, zk))− ζ ⊗ φ̃k

]
µk(dzk)

+

∞∑
k=1

∫
|zk|≥1

ζ ⊗ ψk(u, zk))µk(dzk).

Applying (2.38) to ζpζq, we obtain

L
(
f(ζ)⊗ f(ζ)

)
= 2J +

∞∑
p,q=1

(
σ(t,u)Qσ∗(t,u)ep, eq

)
(2.40)

+

∞∑
k=1

∫
|zk|<1

φk ⊗ φk(u, zk)µk(dzk) +

∞∑
k=1

∫
|zk|≥1

ψk ⊗ ψk(u, zk)µk(dzk).

The proof follows from (2.39) and (2.40) and the definition of a(·) in Remark 2.2.

3. A priori estimates and tightness of measures. In this section, we obtain
moment estimates of order p ≥ 2 by applying the Itô calculus for the finite dimen-
sional Galerkin approximation of the Navier-Stokes systems (2.10). Let {e1, e2, · · · }
be the orthonormal basis in H included in V with each ei ∈ D(A), i = 1, 2 · · · . Let
Πn be the orthogonal projection in V onto the space Vn := span{e1, e2, · · · , en}.
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Then un(t) := Πnu(t) =
∑n
i=1(u(t), ei)ei solves the following finite dimensional

Navier-Stokes equations

dun(t) = (−νΠnAun(t)−ΠnB(un(t)) + Πng(t))dt

+

n∑
k=1

∫
|zk|≥1

ψnk
(
un(t), zk

)
µk(dzk)dt+ dMn

t (3.1)

where the local martingale Mn
t with notations σn = Πnσ,Wn = ΠnW, φnk = Πnφk

and ψnk = Πnψk is given by

Mn
t =

∫ t

0

σn(s,un(s))dWn(s) +

∫ t

0

n∑
k=1

∫
|zk|<1

φnk
(
un(s−), zk

)
π̃k(ds, dzk)

+

∫ t

0

n∑
k=1

∫
|zk|≥1

ψnk
(
un(s−), zk

)
π̃k(ds, dzk). (3.2)

Since the càdlàg process un solves the system (3.1) in Vn with initial condition Πnu0

and Vn ⊂ H ⊂ V′, the laws Pn of these finite dimensional approximations can be
considered as defined on D(0, T ;V′) satisfying the properties Pn{ξ(0) = Πnu0} = 1
and the process

Mf
t = f(ξ(t))− f(ξ(0))−

∫ t

0

L f(ξ(s))ds (3.3)

is a R-valued locally square integrable Pn-local càdlàg martingale, where L f(·)
stands for the restriction of formal generator (2.17) associated with the finite di-
mensional system (3.1). Then the following theorem gives the uniform bounds for

the measures Pn on Ω̃.

Theorem 3.1. Let g ∈ L2(0, T ;V′) and E|ξ(0)|p =
∫
H |x|

pdP(x) < ∞, ∀p ≥
2. Suppose the noise coefficients σn and φnk , ψ

n
k , k = 1, 2 · · · satisfy Assumptions

2.1 and 2.2 respectively. Assume that Mf
t defined in (3.3) is a Hn-valued square

integrable Pn-local càdlàg martingale. Then Pn is supported in Ω̃ and

EPn

|ξ(t)|2 + νEPn

∫ t

0

‖ξ(s)‖2ds ≤ Ĉ(1 + E (ξ0,g)), (3.4)

with Ĉ =
[
1 + exp(NT )(NT + 1)

]
(1 ∨NT ), N = (1 + Ñ2 + CN3), where

E (ξ0,g) = E|ξ(0)|2 +
1

ν

∫ T

0

‖g(t)‖2V′dt.

Besides,

EPn

sup
0≤s≤t

|ξ(s)|2 + νEPn

∫ t

0

‖ξ(s)‖2ds ≤ C̃(1 + E (ξ0,g)), (3.5)

where C̃ = 2[1 + exp(18NT )(18NT + 1)](1 ∨ 9NT ). Moreover, for all p ≥ 2

EPn

sup
0≤s≤t

|ξ(s)|p + νEPn

∫ t

0

|ξ(s)|p−2‖ξ(s)‖2ds (3.6)

≤ C(p, T, Ñ2, N3, ν)
[
1 + E|ξ(0)|p +

(∫ T

0

‖g(t)‖2V′dt
)p/2]

.
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Proof. Form > 0, define the stopping time τm = inf{t ≥ 0 : |ξ(t)|2+ν
∫ t

0
‖ξ(s)‖2ds ≥

m}, where by convention, τm = T if the set is empty. Applying the finite di-
mensional Itô formula (see, [27, 2, 26]) to |ξ(t)|2 with a note of (ΠnB(ξ), ξ) =
(B(ξ),Πnξ) = 0, Pn − a.s., we get

|ξ(t ∧ τm)|2 + 2ν

∫ t∧τm

0

‖ξ(s)‖2ds = |ξ(0)|2 (3.7)

+2

∫ t∧τm

0

〈 n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk) + Πng(s), ξ(s)

〉
ds

+[Mn]t∧τm + 2

∫ t∧τm

0

(ξ(s), dMn
s ).

Here we note that 2〈ξ,Πng〉 = 2〈Πnξ,g〉 ≤ ν‖ξ‖2 + 1
ν ‖g‖

2
V′ and

2

∫ t∧τm

0

〈 n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk), ξ(s)

〉
ds

≤
∫ t∧τm

0

|ξ(s)|2ds+

∫ t∧τm

0

∣∣∣ n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk)

∣∣∣2ds
≤

∫ t∧τm

0

|ξ(s)|2ds+ Cµ

∫ t∧τm

0

n∑
k=1

∫
|zk|≥1

|ψnk
(
ξ(s), zk

)
|2µk(dzk)ds

≤ (CµN3 + 1)

∫ t∧τm

0

(1 + |ξ(s)|2)ds,

where Cµ =
∑∞
k=1

∫
|zk|≥1

µk(dzk). The expectation of the local martingale is zero,

gives

EPn

|ξ(t ∧ τm)|2 + νEPn

∫ t∧τm

0

‖ξ(s)‖2ds ≤ E|ξ(0)|2 +
1

ν

∫ t∧τm

0

‖g(s)‖2V′ds

+(CµN3 + 1)EPn

∫ t∧τm

0

(1 + |ξ(s)|2)ds+ EPn

[Mn]t∧τm . (3.8)

Since ([Mn]t∧τm −CMnBt∧τm)t≥0 is a local martingale,

EPn

[Mn]t∧τm = EPn

C MnBt∧τm = EPn

tr�Mn �t∧τm .

Besides, from Lemma 2.7, we have

EPn

tr�Mn �t∧τm = EPn

∫ t∧τm

0

tr
(
σn(s, ξ(s))Qσ∗n(s, ξ(s))

)
ds

+EPn

∫ t∧τm

0

( n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|2µk(dzk)

+

n∑
k=1

∫
|zk|≥1

|ψnk (ξ(s), zk)|2µk(dzk)
)
ds.

Using Assumptions 2.1 and 2.2, we arrive at

EPn

tr�Mn �t∧τm ≤ (Ñ2 +N3)EPn

∫ t∧τm

0

(1 + |ξ(s)|2)ds

= (Ñ2 +N3)
(
EPn

(t ∧ τm) +

∫ t∧τm

0

EPn

|ξ(s)|2ds
)
. (3.9)
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The last equality follows from the stochastic Fubini theorem. Thus, dropping the
second integral in the left hand side of (3.8) and using Gronwall’s inequality, we get

EPn

|ξ(t ∧ τm)|2 ≤ C1

(
1 + E (ξ0,g)

)
, (3.10)

where C1 = exp(NT )(1∨NT ). Also substitutions of (3.9) and (3.10) into (3.8) give
rise to

νEPn

∫ t∧τm

0

‖ξ(s)‖2ds ≤ C2

(
1 + E (ξ0,g)

)
, (3.11)

where C2 = (1 + NT exp(NT ))(1 ∨NT ). But taking supremum up to time t ∧ τm
in (3.7) and then applying expectation leads to

EPn

sup
s≤t∧τm

|ξ(s)|2 + νEPn

∫ t∧τm

0

‖ξ(s)‖2ds ≤ EPn

|ξ(0)|2 (3.12)

+
1

ν

∫ T∧τm

0

EPn

‖g(t)‖2V′dt+ (CµN3 + 1)EPn

∫ t∧τm

0

(1 + |ξ(s)|2)ds

+EPn

[Mn]t∧τm + 2EPn

sup
s≤t∧τm

|M̃n
s |,

where M̃n
s =

∫ s
0

(ξ(r), dMn
r ). Using the Burkholder-Davis-Gundy (BDG) inequality

followed by Lemma 2.7, we have

2EPn

sup
s≤t∧τm

|M̃n
s | ≤ 2

√
2EPn

[M̃n]
1/2
t∧τm = 2

√
2EPn{∫ t∧τm

0

(ξ(s), dJMnKsξ(s))
}1/2

≤ 2
√

2EPn{∫ t∧τm

0

|ξ(s)|2tr
(
σn(s, ξ(s))Qσ∗n(s, ξ(s))

)
ds
}1/2

+2
√

2EPn
{∫ t∧τm

0

|ξ(s)|2
( n∑
k=1

∫
|zk|<1

|φnk (ξ(s−), zk)|2πk(dzk, ds)

+

n∑
k=1

∫
|zk|≥1

|ψnk (ξ(s−), zk)|2πk(dzk, ds)
)}1/2

.

Applying Young’s inequality, we further estimate

≤ 2EPn
({

sup
s≤t∧τm

|ξ(s)|2
}1/2{

2

∫ t∧τm

0

‖σn(s, ξ(s))‖2LHS
ds
}1/2

)
+2EPn

({
sup

s≤t∧τm
|ξ(s)|2

}1/2{
2

∫ t∧τm

0

n∑
k=1

∫
|zk|<1

|φnk (ξ(s−), zk)|2πk(dzk, ds)

+

∫ t∧τm

0

n∑
k=1

∫
|zk|≥1

|ψnk (ξ(s−), zk)|2πk(dzk, ds)
}1/2)

.
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And from Assumptions 2.1 and 2.2, we finally have

2EPn

sup
s≤t∧τm

|M̃n
s | ≤

1

2
EPn

sup
s≤t∧τm

|ξ(s)|2 + 8EPn

∫ t∧τm

0

‖σn(s, ξ(s))‖2LHS
ds

+8EPn

∫ t∧τm

0

( n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|2µk(dzk)

+

n∑
k=1

∫
|zk|≥1

|ψnk (ξ(s), zk)|2µk(dzk)
)
ds

≤ 1

2
EPn

sup
s≤t∧τm

|ξ(s)|2 + 8(Ñ2 +N3)EPn

∫ t∧τm

0

(1 + |ξ(s)|2)ds. (3.13)

Substitution of (3.9) and (3.13) into (3.12) leads to

EPn

sup
s≤t∧τm

|ξ(s)|2 + 2νEPn

∫ t∧τm

0

‖ξ(s)‖2ds ≤ 2E|ξ(0)|2 (3.14)

+
2

ν

∫ T

0

EPn

‖g(t)‖2V′dt+ 18N
(
T +

∫ t

0

EPn

sup
r≤s∧τm

|ξ(r)|2ds
)
.

Again by Gronwall’s inequality

EPn

sup
s≤t∧τm

|ξ(s)|2 ≤ C3(1 + E (ξ0,g)), (3.15)

where C3 = 2 exp(18NT )(1 ∨ 9NT ) and

EPn

sup
s≤t∧τm

|ξ(s)|2 + νEPn

∫ t∧τm

0

‖ξ(s)‖2ds ≤ C4(1 + E (ξ0,g)), (3.16)

where C4 = 2[1 + exp(18NT ) + 18NT exp(18NT )](1∨9NT ). Now we define the set

Ω̃m = {ω ∈ Ω̃ : |ξ(t)|2 + ν

∫ t

0

‖ξ(s)‖2ds < m},

then from (3.16), one obtains

∫
Ω̃m

(
|ξ(t)|2 + ν

∫ t

0

‖ξ(s)‖2ds
)
dPn(ω)

+

∫
Ω̃\Ω̃m

(
|ξ(t)|2 + ν

∫ t

0

‖ξ(s)‖2ds
)
dPn(ω) ≤ C4(1 + E (u0,g)).

Here the first integral has bounded integrand and therefore recalling the fact that

|ξ(t)|2 + ν

∫ t

0

‖ξ(s)‖2ds ≥ m in Ω̃\Ω̃m,

we get Pn{Ω\Ω̃m} ≤ C5/m. Besides for any t ≤ T, we note that

Pn{ω ∈ Ω̃ : τm < t} = Pn
{
|ξ(t)|2 + ν

∫ t

0

‖ξ(s)‖2ds ≥ m
}
≤ C5

m

whence lim supm→∞ Pn{ω ∈ Ω̃ : τm < t} = 0. Therefore, τm → t as m → ∞ and
hence passing the limit in (3.10), (3.11) and (3.16), one can arrive at (3.4) and (3.5).
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Next we obtain the higher order moment estimates of order p ≥ 2. For fixed
m̃ > 0, define the stopping time

τm̃ = inf
{
t ≥ 0 : |ξ(t)|p +

∫ t

0

|ξ(s)|p−2‖ξ(s)‖2ds ≥ m̃
}
.

Applying the finite dimensional Itô formula (see, [2], Page 251, Theorem 4.4.7) to
|ξ(t)|p, we get

|ξ(t)|p + pν

∫ t

0

|ξ(s)|p−2‖ξ(s)‖2ds =

∫ t

0

p|ξ(s)|p−2〈ξ(s),Πng(s)〉ds

+|ξ(0)|p +

∫ t

0

p|ξ(s)|p−2
(
σn(s, ξ(s)), ξ(s)

)
dWn(s) (3.17)

+
1

2

∫ t

0

{p(p− 2)|ξ(s)|p−4ξ(s)⊗ ξ(s) + p|ξ(s)|p−2}d[Mn]cs +

3∑
i=1

Ji,t

where [Mn]ct denotes the quadratic variation process corresponding to the continu-
ous part of the martingale Mn

t and

J1,t =

∫ t

0

n∑
k=1

∫
|zk|≥1

{
|ξ(s−) + ψnk (ξ(s−), zk)|p − |ξ(s−)|p

}
πk(dzk, ds),

J2,t =

∫ t

0

n∑
k=1

∫
|zk|<1

{
|ξ(s−) + φnk (ξ(s−), zk)|p − |ξ(s−)|p

}
π̃k(dzk, ds),

J3,t =

∫ t

0

n∑
k=1

∫
|zk|<1

{
|ξ(s) + φnk (ξ(s), zk)|p − |ξ(s)|p

−p|ξ(s)|p−2
(
ξ(s), φnk (ξ(s), zk)

)}
µk(dzk)ds.

Taking supremum up to time t ∧ τm̃ and then expectation, we have the following
estimates for the terms on the right hand of (3.17). First applying the Cauchy-
Schwarz inequality followed by Young’s inequality, we get

pEPn

∫ t∧τm̃

0

|ξ(s)|p−2〈ξ(s),Πng(s)〉ds ≤ pν

2
EPn

∫ t∧τm̃

0

|ξ(s)|p−2‖ξ(s)‖2ds

+EPn
(

sup
s≤t∧τm̃

|ξ(s)|(p−2) p

2ν

∫ t∧τm̃

0

‖g(s)‖2V′ds
)

≤ pν

2
EPn

∫ t∧τm̃

0

|ξ(s)|p−2‖ξ(s)‖2ds+
1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p

+C5(p, ν)
(∫ T

0

‖g(t)‖2V′dt
)p/2

. (3.18)
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Using the BDG inequality and Young’s inequality, we get

pEPn

sup
s≤t∧τm̃

∣∣ ∫ s

0

|ξ(s)|p−2
(
σn(s, ξ(s)), ξ(s)

)
dWn(s)

∣∣ (3.19)

≤ C(p)EPn
{∫ t∧τm̃

0

|ξ(s)|2(p−1)‖σn(s, ξ(s))‖2LHS
ds
}1/2

≤ C(p)EPn
({

sup
s≤t∧τm̃

|ξ(s)|2(p−1)
}1/2{

Ñ2

∫ t∧τm̃

0

(1 + |ξ(s)|2)ds
}1/2)

≤ 1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p + C6(p, Ñ2, T )EPn

∫ t∧τm̃

0

(1 + |ξ(s)|p)ds

where we have also used Assumption 2.1. From (2.30), we have

1

2
EPn

sup
s≤t∧τm̃

∣∣∣ ∫ s

0

{p(p− 2)|ξ(r)|p−4ξ(r)⊗ ξ(r) + p|ξ(r)|p−2}d[Mn]cr

∣∣∣ (3.20)

≤ p(p− 1)

2
EPn

∫ t∧τm̃

0

|ξ(s)|p−2‖σn(s, ξ(s))‖2LHS
ds

≤ 1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p + C7(p, Ñ2)
(
EPn

(t ∧ τm̃) +

∫ t∧τm̃

0

EPn

|ξ(s)|pds
)
.

The basic inequality (a+ b)p ≤ 2p−1(ap + bp) for all p ≥ 1 and a, b ≥ 0 leads to

EPn

sup
s≤t∧τm̃

|J1,s|

≤ 2p−1EPn

sup
s≤t∧τm̃

∫ s

0

n∑
k=1

∫
|zk|≥1

{
|ξ(r−)|p + |ψnk (ξ(r−), zk)|p

}
πk(dzk, dr)

≤ 2p−1EPn

∫ t∧τm̃

0

n∑
k=1

∫
|zk|≥1

{
|ξ(s)|p + |ψnk (ξ(s), zk)|p

}
µk(dzk)ds

≤ C8(p,N3)
(
EPn

(t ∧ τm̃) +

∫ t∧τm̃

0

EPn

|ξ(s)|pds
)
. (3.21)

Besides, the integrals J2,t and J3,t can be written as

J2,t + J3,t =

∫ t

0

n∑
k=1

∫
|zk|<1

{
|ξ(s−) + φnk (ξ(s−), zk)|p − |ξ(s−)|p

−p|ξ(s−)|p−2
(
ξ(s−), φnk (ξ(s−), zk)

)}
πk(dzk, ds)

+

∫ t

0

n∑
k=1

∫
|zk|<1

p|ξ(s−)|p−2
(
ξ(s−), φnk (ξ(s−), zk)

)
π̃k(dzk, ds)

:= J4,t + J5,t.

For a,b ∈ Hn, we obtain from Taylor’s formula that∣∣|a + b|p − |a|p − p|a|p−2(a,b)
∣∣ ≤ C(p)(|a|p−2|b|2 + |b|p).
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So, taking a = ξ(s−) and b = φnk (ξ(s−), zk), we get

EPn

sup
s≤t∧τm̃

|J4,s| ≤ C(p)EPn

sup
s≤t∧τm̃

∫ s

0

n∑
k=1

∫
|zk|<1

{
|ξ(r−)|(p−2)

×|φnk (ξ(r−), zk)|2 + |φnk (ξ(r−), zk)|p
}
πk(dzk, dr)

≤ C(p)EPn
(

sup
s≤t∧τm̃

|ξ(s)|p−2

∫ t∧τm̃

0

n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|2µk(dzk)ds
)

+C(p)EPn

∫ t∧τm̃

0

n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|pµk(dzk)ds.

Applying Assumption 2.2, we further estimate the above integral as

EPn

sup
s≤t∧τm̃

|J4,s| ≤
1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p + C(p)EPn
{
N3

∫ t∧τm̃

0

(1 + |ξ(s)|2)ds
}p/2

+C(p,N3)EPn

∫ t∧τm̃

0

(1 + |ξ(s)|p)ds

≤ 1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p + C9(p,N3, T )EPn

∫ t∧τm̃

0

(1 + |ξ(s)|p)ds. (3.22)

Using the BDG inequality(see, [11]) and Young’s inequality, we obtain

EPn

sup
s≤t∧τm̃

|J5,s| ≤ CEPn

C J5B
1/2
t∧τm̃ ≤ C(p)EPn

({
sup

s≤t∧τm̃
|ξ(s)|2(p−1)

}1/2

×
{∫ t∧τm̃

0

n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|2µk(dzk)ds
}1/2)

≤ 1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p + C(p)EPn
{
N3

∫ t∧τm̃

0

(1 + |ξ(s)|2)ds
}p/2

≤ 1

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p + C10(p,N3, T )EPn

∫ t∧τm̃

0

(1 + |ξ(s)|p)ds. (3.23)

Thus, the estimates (3.18)-(3.23) lead to

3

8
EPn

sup
s≤t∧τm̃

|ξ(s)|p +
pν

2
EPn

∫ t∧τm̃

0

|ξ(s)|p−2‖ξ(s)‖2ds (3.24)

≤ E|ξ(0)|p + C5(p, ν)
(∫ T

0

‖g(t)‖2V′dt
)p/2

+C11(p, T, Ñ2, N3)
(
1 +

∫ t

0

EPn

sup
r≤s∧τm̃

|ξ(r)|pds
)
.

By Gronwall’s inequality, we have

EPn

sup
s≤t∧τm̃

|ξ(s)|p ≤ C̄(p, T, Ñ2, N3, ν)
[
1 + E|ξ(0)|p +

(∫ T

0

‖g(t)‖2V′dt
)p/2]

,(3.25)
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where C̄ = 8 exp(C11)(1 ∨ C5 ∨ C11). Hence,

EPn

sup
s≤t∧τm̃

|ξ(s)|p + pνEPn

∫ t∧τm̃

0

|ξ(s)|p−2‖ξ(s)‖2ds (3.26)

≤ C(p, T, Ñ2, N3, ν)
[
1 + E|ξ(0)|p +

(∫ T

0

‖g(t)‖2V′dt
)p/2]

,

where C = 8[1 + T exp(C11)](1 ∨C5 ∨C11). By the argument similar to the case of
p = 2, we also get that τm̃ → t as m̃→∞ and hence passing the limit in (3.26), we
can conclude the proof.

Now we prove the tightness of the probability measures Pn on Ω̃. Let us recall the

topologies associated with the path space Ω̃. A topological space that is metrizable
as a complete separable metric space is said to be Polish. A topological space is
a Lusin if and only if it is homeomorphic to a topological space which is a Borel
subset of a Polish space (see, [28]). A Radon measure is a measure on the Borel
sigma algebra of a topological space that is locally finite and inner regular. Every
Borel measure on a Lusin space is a Radon measure.

Taking the path space Ω̃ = D(0, T ;V′)J ∩ L∞(0, T ;H)w∗ ∩ L2(0, T ;V)w into ac-
count, we call T1 := D(0, T ;V′)J , where J denotes the extended Skorohod topology
(see, [22]), T2 := L∞(0, T ;H)w∗ , where w∗ denotes the weak-star topology and T3 :=
L2(0, T ;V)w, where w denotes the weak topology and T4 as the strong topology of
L2(0, T ;H). Note that the spaces D(0, T ;V′)J , L∞(0, T ;H)w∗ and L2(0, T ;V)w are
completely regular and continuously embedded in L2(0, T ;V′)w. Let T be the supre-
mum of four topologies, that is, T = T1 ∨ T2 ∨ T3 ∨ T4. Then from Proposition 1,

Page 63 of [22], it is clear that the intersection of these three spaces Ω̃ endowed
with the topology T is a Lusin space.

Radon probability measures Pn on a completely regular topological space E,
that is, a topological space which is Hausdorff separated and whose topology can
be defined by a set {dα, α ∈ Z} of pseudo-distances, is said to converge weakly to

a Radon probability measure P if limn→∞
∫

Ω̃
FdPn =

∫
Ω̃
FdP, ∀F ∈ Cb(Ω̃).

The tightness condition needed for the Prokhorov-Varadarajan theorem is that
for every ε > 0 there exists a compact set Kε ⊂ E such that supn P

n(E\Kε) ≤ ε
([39, 22, 28]):

Theorem 3.2. If the bounded Radon measures Pn on a completely regular topolog-
ical space E satisfy supn P

n(E) < ∞ and Pn are tight, then the measures Pn are
relatively weakly compact in the set of bounded positive Radon measures.

A sufficient condition for tightness of the laws Pn of a semimartingale Xn due
to Rebolledo (see, [22], Page 66, which makes use of the Aldous condition [1]) is
stated below. Let S be a locally convex topological vector space with {dα, α ∈ Z}
a filtering family of semi-norms defining its locally convex structure. Let Πα be the
canonical projection S → Sα. Assume that the normed space Sα associated with
each dα are separable Hilbert spaces. Let Xn be the sequence of S-valued processes
and let Xn,α = ΠαX

n denote the Sα valued projections. Then

Theorem 3.3. For each α, let Xn,α be the semimartingale which is of the form
Xn,α(t) = ΠαX

n(0)+An,α(t)+Mn,α(t) where An,α is a process with finite variation
and Mn,α is a square integrable martingale. If the laws Pn of Xn,α satisfy the
following two conditions,
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[T] For every t in some denumerable subset I0 of [0, T ] and for every ε > 0, there
exists a compact subset Kε of S and a denumerable subset Zε of Z such that
on Kε, the families {δα : α ∈ Z} and {δα : α ∈ Zε} of pseudo-distances are
equivalent and

sup
t∈I0

sup
n
Pn{ω(t) : ω(t) /∈ Kε} ≤ ε

[A] For each α, the processes An,α and CMn,αB satisfy the Aldous condition,
namely, for each N > 0, ε > 0 and η > 0, there exist r > 0 and n0 such that

sup
n≥n0

sup
0≤s≤r

Pn
{
dα
(
ω(τn + s), ω(τn)

)
≥ η

}
≤ ε,

for all stopping times τn with τn ≤ N,
then the laws Pn of the semimartingale Xn,α are tight.

For more details of Theorem 3.3, in particular, for the definition of the metric δα
one can refer to [22], Page 64.

3.1. The case of bounded domain. If the domain O is bounded, the embeddings
V ↪→ H ↪→ V′ are compact and dense, we also have the following compactness result
(see, [22], Page 112, Lemma 2).

Lemma 3.1. Let K be a subset of L2(0, T ;H) which is included in a compact set

of L2(0, T ;V′) and supu∈K
∫ T

0
‖u(t)‖2Vdt < ∞. Then K ⊂ L2(0, T ;H) is relatively

compact.

We are ready to state and prove the tightness of the measures Pn on the Lusin

space (Ω̃, F̃t) with the topology T .

Proposition 3.1. The sequence of probability measures Pn on (Ω̃, F̃t) having sup-
port in L∞(0, T ;H)w∗∩L2(0, T ;V)w are tight on D(0, T ;V′)J and satisfy the uniform
bound

EPn

sup
0≤t≤T

|ξ(t)|2 +

∫ T

0

EPn

‖ξ(t)‖2dt <∞. (3.27)

Proof. It is easy to see from the a priori estimate (3.5),

EPn
(

sup
0≤t≤T

|ξ(t)|2 + ν

∫ T

0

‖ξ(t)‖2dt
)
≤ N, (3.28)

where N > 0 is a constant independent of n, whence the tightness of Pn achieved in
L∞(0, T ;H)w∗ and L2(0, T ;V)w. Indeed for ε > 0, takingNε := N/ε and considering

Ω̃ε = {ω ∈ Ω̃ : sup0≤t≤T |ξ(t)|2 ≤ Nε}, we obtain from (3.28) that∫
Ω̃ε

sup
0≤t≤T

|ξ(t)|2dPn(ω) +

∫
Ω̃\Ω̃ε

sup
0≤t≤T

|ξ(t)|2dPn(ω) ≤ N

whence Pn(ω ∈ Ω̃ : sup0≤t≤T |ξ(t)|2 > Nε) ≤ ε. At the same time the set K2
ε = {ω ∈

Ω̃ : sup0≤t≤T |ξ(t)|2 ≤ Nε} is relatively compact in L∞(0, T ;H) for the topology T2

and Pn(K2
ε ) ≥ 1− ε. Similarly from (3.28) there exists

K3
ε = {ω ∈ Ω̃ :

∫ T

0

‖ξ(t)‖2dt ≤ Nε} in Ω̃

relatively compact in L2(0, T ;V) for the topology T3 such that Pn(K3
ε ) ≥ 1− ε.
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Now we establish the sufficient conditions for tightness of the laws Pn in D(0, T ;V′)J
by using Theorem 3.3.

Condition [T]: Note that Pn ◦ ξ(t)−1 form a tight sequence in V′. In fact, from
the energy estimate (3.4), EPn |ξ(t)|2 ≤ C and so for each ε > 0 there exists a

Cε > 0 such that Kε = {ω ∈ Ω̃ : |ξ(t)|2 ≤ Cε} and Pn(Ω̃\Kε) ≤ ε in Hw. Since
the embedding H ↪→ V′ is compact, the ball Kε is relatively compact in V′ which
confirms the tightness of marginal distribution of ξ(t) in V′. This proves one of the
conditions ([T]) of Theorem 3.3.

Condition [A]: The Aldous condition ([A]) given in Theorem 3.3 can be estab-
lished in our context using the Chebyshev inequality as follows(see, [13]): For any
given ε > 0, there exists δ such that for all stopping times τm ≤ T − δ, the following
hold:

EPn

∫ τm+δ

τm

∥∥νAξ(s) + B(ξ(s)) + g(s) (3.29)

+

n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk)

∥∥
V′ds ≤ ε

EPn

∫ τm+δ

τm

d(tr�Mn �s) ≤ ε. (3.30)

Let us do the term by term verification of the estimate (3.29) using the energy
estimate (3.28) and the Cauchy-Schwarz inequality. First, we note that

νEPn

∫ τm+δ

τm

‖Aξ(s)‖V′ds ≤ νEPn

∫ τm+δ

τm

‖ξ(s)‖ds

≤ ν
{
EPn

(∫ τm+δ

τm

‖ξ(s)‖ds
)2}1/2

≤ νδ1/2
{
EPn

∫ δ

0

‖ξ(τm + s)‖2ds
}1/2

≤ Ñδ1/2. (3.31)

Then for O ⊂ Rd, d = 2, 3, we use Ladyzhenskaya’s inequalities (2.21) to get

EPn

∫ τm+δ

τm

‖B(ξ(s))‖V′ds ≤ C1EPn

∫ τm+δ

τm

|ξ(s)|2−(d/2)‖ξ(s)‖d/2ds

≤ C1δ
pEPn

(
sup
t∈[0,T ]

|ξ(t)|2p
{∫ τm+δ

τm

‖ξ(s)‖2ds
}d/4)

≤ C1δ
pEPn

(
p sup
t∈[0,T ]

|ξ(t)|2 + (1− p)
∫ δ

0

‖ξ(τm + s)‖2ds
)
≤ Ñδp, (3.32)

where p = 1− (d/4). From Assumption 2.2, we have

EPn

∫ τm+δ

τm

∥∥ n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk)

∥∥
V′ds

≤ CCµ
√
N3δ

1/2EPn
{∫ τm+δ

τm

(1 + |ξ(s)|2)ds
}1/2

≤ CCµ
√
N3δ

{
1 + EPn

sup
t∈[0,T ]

|ξ(t)|2
}1/2

≤ Ñδ, (3.33)
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where Cµ =
(∑n

k=1

∫
|zk|≥1

µk(dzk)
)1/2

. Next we verify the estimate (3.30) using

the Assumptions 2.1, 2.2 and the Meyer process which we obtained in Lemma 2.7
as follows

EPn

∫ τm+δ

τm

d(tr�Mn �s) = EPn

∫ τm+δ

τm

tr
(
σn(s, ξ(s))Qσ∗n(s, ξ(s))

)
ds

+EPn

∫ τm+δ

τm

n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|2µk(dzk)ds

+EPn

∫ τm+δ

τm

n∑
k=1

∫
|zk|≥1

|ψnk (ξ(s), zk)|2µk(dzk)ds

≤ (Ñ2 +N3)EPn

∫ τm+δ

τm

(1 + |ξ(s)|2)ds

≤ (Ñ2 +N3)δ(1 + EPn

sup
t∈[0,T ]

|ξ(t)|2) ≤ Ñδ. (3.34)

Eventually, the estimates (3.31)-(3.34) establish the Aldous condition [A] of The-

orem 3.3. Thus conditions [T] and [A] show that there exists K1
ε in Ω̃ relatively

compact for the topology T1 := D(0, T ;V′)J such that Pn(K1
ε ) ≥ 1− ε.

Finally, we obtain the tightness of the measures Pn in L2(0, T ;H) for the strong
topology T4. In view of Lemma 3.1, we generate a subset K4

ε from L2(0, T ;
H) ∩ D(0, T ;V′) such that it is bounded in L2(0, T ;H) and relatively compact in
L2(0, T ;V′). Taking the embedding L2(0, T ;V) ↪→ L2(0, T ;H) into account, we can
use the tightness of Pn in L2(0, T ;V) for the topology T3 so that for each ε > 0
there exists Nε > 0 such that

Pn{ω ∈ Ω̃ :

∫ T

0

‖ξ(t)‖2dt ≤ Nε} ≥ 1− ε.

From the existence of the set K1
ε for T1, define

K4
ε = K1

ε ∩ {ξ(t) ∈ L2(0, T ;H) :

∫ T

0

‖ξ(t)‖2dt ≤ Nε}.

Then for each ε > 0, the set K4
ε in L2(0, T ;H) ∩ D(0, T ;V′) satisfies Pn(K4

ε ) ≥
2(1 − ε). Besides, the embeddings L2(0, T ;H) ∩ D(0, T ;V′) ↪→ L2(0, T ;V′) being
compact, we can conclude from Lemma 3.1 that the set K4

ε is relatively compact in
L2(0, T ;H).

Hitherto, we have shown that the Radon measures Pn are tight in the topologies
Ti, i = 1, 2, 3, 4. Since the spaces D(0, T ;V′)J , L∞(0, T ;H)w∗ , L2(0, T ;V)w, and
L2(0, T ;H) are continuously embedded in L2(0, T ;V′)w, it follows from Proposition

1, Page 63 of [22] that the measures Pn are tight in the Lusin space Ω̃ endowed with
the topology T . The proof is thus completed.

3.2. The case of unbounded domain. When the domain O is unbounded the
embeddings V ↪→ H ↪→ V′ are not compact and hence the tightness properties
established in the previous section on the spaces D(0, T ;V′) and L2(0, T ;H) are no
longer valid. This leads us to prove the tightness of the measures Pn in the weak
topology of H, namely Hw.

Let T5 be the topology induced by D(0, T ;Hw). Since D(0, T ;V′)∩L∞(0, T ;H) ⊂
D(0, T ;Hw)(see, [23]), we can take T̃ = T3 ∨ T5, where T3 is the weak topology of
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L2(0, T ;V). The path space Ω̃ as a Borel subset of D(0, T ;Hw) ∩ L2(0, T ;V)w, it

forms a Lusin space for the topology T̃ . Then, we have the following result.

Proposition 3.2. The sequence of probability measures Pn on (Ω̃, F̃t) are tight for

the Lusin topology T̃ .

Proof. It is easy to see from the arguments of Proposition 3.1 that the measures Pn
are tight in L2(0, T ;V)w and the marginal distributions of ξ(t),∀t ∈ [0, T ] are tight
in Hw.

To complete the tightness in D(0, T ;Hw), we need to prove the following weak
form of the Aldous condition (noting that the set V is dense in H) for every v ∈
V, ε > 0, there exists δ such that for all stopping times τm ≤ T − δ, the following
hold:∣∣∣EPn

∫ τm+δ

τm

〈
νAξ(s) + B(ξ(s)) +

n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk), v

〉
ds
∣∣∣ ≤ ε(3.35)

EPn

∫ τm+δ

τm

〈v, d�Mn �s v
〉
≤ ε. (3.36)

For every v ∈ V, we obtain from (3.31) that

νEPn

∫ τm+δ

τm

|〈Aξ(s), v〉|ds ≤ νEPn

∫ τm+δ

τm

‖Aξ(s)‖V′ds‖v‖ ≤ Ñδ1/2‖v‖. (3.37)

Similar estimates hold true for the nonlinear term EPn ∫ τm+δ

τm
|〈B(ξ(s)), v〉|ds and

the compensating integral

EPn

∫ τm+δ

τm

∣∣∣〈 n∑
k=1

∫
|zk|≥1

ψnk
(
ξ(s), zk

)
µk(dzk), v

〉∣∣∣ds.
Besides, from (3.34) note that

EPn

∫ τm+δ

τm

〈
v, d�Mn �s v

〉
≤ EPn

∫ τm+δ

τm

d(tr�Mn �s)|v|2 ≤ Ñδ|v|2.

The preceding estimates prove the tightness of Pn in D(0, T ;Hw) for T5 and thereby

one can conclude that the measures Pn are tight on Ω̃ for the Lusin topology T̃ .

4. Martingale problem for Navier-Stokes equations with Lévy noise. In
the case unbounded domain (see, Remark 4.1), the lack of compact embeddings

affects the continuity of the martingales Mf
t on Ω̃ and hence one cannot conclude

to the martingale property of any limit P of the sequence Pn. In order to overcome
this difficulty, we use the so-called Minty stochastic lemma (see, [40, 22, 31]) which
is classical in the case of deterministic evolution equations with monotone operators.

Now we prove the main theorem.

Proof of Theorem 2.1: (The domain O is bounded in R2). First note that the no-

tion of Mf
t is an (Ω̃, F̃t,P)-martingale can be stated equivalently by

EP[Φ(Mf
t −Mf

s )] = 0, for all t ≥ s (4.1)

and for all Φ ∈ Cb(Ω̃) such that Φ is F̃s-measurable. In fact, to make the above
conclusion, we naturally use the fact that for every n

EPn

[Φ(Mf
t −Mf

s )] = 0, for all t ≥ s. (4.2)
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But the tightness of the measures Pn on Ω̃ and P(Ω̃) = 1 (follows from the energy
estimates in Theorem 3.1, see, for example, [22], Page 102) are not sufficient to

conclude (4.1) from (4.2) since Mf
t is not continuous on Ω̃. So we proceed as follows.

The boundedness of Θ(ξ) := νAξ + B(ξ) in L2(0, T ;V′) ensures the continuity
of Θ(·) from L2(0, T ;V) to L2(0, T ;V′)w and so Θ(·) is Borel measurable from

Ω̃→ L2(0, T ;V′)w. Now we define the image of Pn under the map ξ → (ξ,Θ(ξ)) as

P̂n(S) := Pn{ω ∈ Ω̃; (ω,Θ(ω)) ∈ S}, for S ∈ B(Ω̃× L2(0, T ;V′)w).

On Ω̂ := Ω̃× L2(0, T ;V′)w, consider the canonical right-continuous filtration Ĝt
and canonical processes ξ(t, ω,v) = ω(t) and χ(t, ω,v) = v(t). Since the mea-

sures Pn are tight on Ω̃ with Lusin topology, we note from Theorem 3.1 that

EPn ∫ T
0
‖Θ(ξ(t))‖2V′dt ≤ C, and hence there exists a Nε > 0 such that the following

holds:

sup
n

P̂n
{

(ω,v) ∈ Ω̃× L2(0, T ;V′)w;

∫ T

0

‖v(t)‖2V′dt > Nε

}
≤ ε.

Since the set {v :
∫ T

0
‖v(t)‖2V′ ≤ Nε} is compact in L2(0, T ;V′)w, the measures

P̂n are tight on Ω̂. Then the sequence of probability measures P̂n on Ω̂ satisfy the
following:

[N1] P̂n{(ω,v) ∈ Ω̂ : Θ(ω) = v} = 1.

[N2] For every (ω,v) ∈ Ω̂ and for any f ∈ D(L ), the process M̂f
t on Ω̂ defined by

M̂f
t (ω,v) := f(ξ(t, ω,v))−f(ξ(0, ω,v))−

∫ t
0

L f(s, ξ(s, ω,v))ds is a R-valued

locally square integrable (Ω̂, Ĝt, P̂n)-local càdlàg martingale.

It is easy to show that (M̂f
t , P̂n) is square integrable. Let {ek}, k = 1, 2, · · · , n be

an orthonormal basis in Hn. Since |M̂f
t |2 −CM̂fBt is a martingale,

EP̂n

|M̂f
t |2 =

n∑
k=1

EP̂n

(M̂f
t , ek)2 =

n∑
k=1

EP̂n

C (M̂f , ek), (M̂f , ek) Bt

=

n∑
k=1

EP̂n

(ek,� M̂f �t ek) = EP̂n

(tr� M̂f �t)

and so

EP̂n

|M̂f
t |2 = EP̂n

∫ t

0

‖σn(s, ξ(s))‖2LHS
ds

+EP̂n

∫ t

0

n∑
k=1

∫
|zk|<1

|φnk (ξ(s), zk)|2µk(dzk)ds

+EP̂n

∫ t

0

n∑
k=1

∫
|zk|≥1

|ψnk (ξ(s), zk)|2µk(dzk)ds. (4.3)

≤ (Ñ2 +N3)EP̂n

∫ t

0

(1 + |ξ(s)|2)ds ≤ C(1 + E (ξ(0),g)) <∞,

where we used the uniform bound (3.4). For ε > 0, making use of (4.3), we obtain

EP̂n

|M̂f
t |1+ε ≤

{
EP̂n

(1)p
}1/p{EP̂n

|M̂f
t |2
}(1+ε)/2

(4.4)

≤
{
C(1 + E (ξ(0),g))

}(1+ε)/2
<∞,
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where p = 2/(1− ε). By Fatou’s lemma

EP̂|M̂f
t |1+ε ≤

{
C(1 + E (ξ(0),g))

}(1+ε)/2

so that EP̂|M̂f
t |2 <∞. Thus we have also shown that (M̂f

t , P̂) is square integrable.

Since the sequence of measures {P̂n} are tight on Ω̂, there exist a subsequence

of {P̂n} converging weakly to a measure P̂. At this point, we need the following
fundamental lemma.

Lemma 4.1 (Minty Stochastic Lemma). Let O be a bounded domain in R2. Let

P̂n be the sequence of probability measures on Ω̂ satisfying [N1] and [N2]. Suppose

Assumptions 2.1 and 2.2 hold true. Assume that the measures P̂n converge weakly

to a measure P̂ on Ω̂ such that [N2] holds for P̂. Then [N1] also holds true for P̂,
that is,

P̂{(ω,v) ∈ Ω̂ : Θ(ξ(ω,v)) = χ(ω,v)} = 1. (4.5)

Proof. Let ζ(·, ·, t) be the continuous function of the form ζ(ω,v, t) =
∑k
i=1 ϕi(ω,v,

t)ei with ei ∈ V which form a dense set in the space L2(Ω̂;L2(0, T ;V)), where

ϕi(·, ·, t) are continuous in Ω̂ with paths in L2(0, T ). Here we restrict to the function
ζ(ω,v, t) = ϕ(ω,v, t)e0, e0 ∈ V.

For each given ζ(·, ·, t) and

ρ(t) :=
27

ν3

∫ t

0

‖ζ(s)‖4L4(O)ds,

let us define

Ψ(ω,v) := 2

∫ T

0

e−ρ(t)〈χ(ω,v, t)−Θ(ζ(ω,v, t)), ξ(ω, t)− ζ(ω,v, t)〉dt

+

∫ T

0

e−ρ(t)ρ̇(t)|ξ(ω, t)− ζ(ω,v, t)|2dt. (4.6)

But in view of [N1] and Lemma 2.4, we get∫
Ω̂

Ψ(ω,v)dP̂n(ω,v) ≥ 0. (4.7)

We decompose Ψ into Ψ1 and Ψ2 as follows

Ψ1 = 2

∫ T

0

e−ρ(t)〈χ(t), ξ(t)〉dt+

∫ T

0

e−ρ(t)ρ̇(t)|ξ(t)|2dt−
∫ T

0

e−ρ(t)d[M̂]t (4.8)

and

Ψ2 = −2

∫ T

0

e−ρ(t)〈χ(t)−Θ(ζ(t)), ζ(t)〉dt (4.9)

−2

∫ T

0

e−ρ(t)〈Θ(ζ(t)), ξ(t)〉dt+

∫ T

0

e−ρ(t)ρ̇(t)|ζ(t)|2dt

−2

∫ T

0

e−ρ(t)ρ̇(t)〈ζ(t), ξ(t)〉dt+

∫ T

0

e−ρ(t)d[M̂]t,
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where M̂ is the local martingale with quadratic variation

[M̂]t = tr(ĴMKt) =

∫ t

0

‖σ(ξ(s))‖2LHS
ds

+

∫ t

0

∞∑
k=1

∫
|zk|<1

|φk(ξ(s), zk)|2πk(dzk, ds)

+

∫ t

0

∞∑
k=1

∫
|zk|≥1

|ψk(ξ(s), zk)|2πk(dzk, ds).

Now we prove the continuity of Ψ1(ω,v) in the Lusin topology of Ω̂. Applying the
Itô formula for Hilbert space valued local semimartingale (see, [26]) to e−ρ(t)|ξ(t)|2,
we get

e−ρ(t)|ξ(t)|2 = |ξ(0)|2 −
∫ t

0

e−ρ(s)ρ̇(s)|ξ(s)|2ds− 2

∫ t

0

e−ρ(s)〈χ(s), ξ(s)〉ds

+2

∫ t

0

e−ρ(s)
〈
ξ(s),g(s) +

∞∑
k=1

∫
|zk|≥1

ψk(ξ(s), zk)µk(dzk)
〉
ds

+2

∫ t

0

e−ρ(s)(ξ(s), dM̂s) +

∫ t

0

e−ρ(s)d[M̂]s.

Since M̂(ω,v) is a local P̂-martingale, it has zero averages and therefore taking

Ψ̂1(ω,v) = |ξ(0)|2 − e−ρ(T )|ξ(T )|2 + 2

∫ T

0

e−ρ(s)〈ξ(s),g(s)〉ds

+2

∫ T

0

e−ρ(s)
〈
ξ(s),

∞∑
k=1

∫
|zk|≥1

ψk(ξ(s), zk)µk(dzk)
〉
ds,

we arrive at ∫
Ω̂

Ψ̂1(ω,v)dP̂(ω,v) =

∫
Ω̂

Ψ1(ω,v)dP̂(ω,v). (4.10)

Besides, M̂(ω,v) is a local P̂n-martingale ([N2]), we also note that∫
Ω̂

Ψ̂1(ω,v)dP̂n(ω,v) =

∫
Ω̂

Ψ1(ω,v)dP̂n(ω,v). (4.11)

From Lemma 2.5, the jump integral in Ψ̂1(ω,v) is continuous in the Lusin topology

of Ω̂. Moreover, Ψ̂1(ω,v) is upper semicontinuous on Ω̂ for the Lusin topology
T (that is, due to the topologies T3 and T4)

lim sup
n→∞

∫
Ω̂

Ψ̂1(ω,v)dP̂n(ω,v) ≤
∫

Ω̂

Ψ̂1(ω,v)dP̂(ω,v). (4.12)

The integral with quadratic variation [M̂]t in Ψ2(ω,v) is continuous in the Lusin

topology of Ω̂ (in particular, due to the strong topology T4) and the integral involv-

ing Θ(·) is continuous due to the continuity of ϕ(·, ·, t) on Ω̂. Therefore,

lim
n→∞

∫
Ω̂

Ψ2(ω,v)dP̂n(ω,v) =

∫
Ω̂

Ψ2(ω,v)dP̂(ω,v). (4.13)
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From (4.7), (4.12) and (4.13), we arrive at

0 ≤ lim sup
n→∞

∫
Ω̂

Ψ(ω,v)dP̂n(ω,v) = lim sup
n→∞

∫
Ω̂

(Ψ̂1(ω,v) + Ψ2(ω,v))dP̂n(ω,v)

≤
∫

Ω̂

(Ψ1(ω,v) + Ψ2(ω,v))dP̂(ω,v).

Eventually, we have shown that∫
Ω̂

Ψ(ω,v)dP̂(ω,v) ≥ 0. (4.14)

Now taking ζ(ω,v, t) = ξ(ω, t)−λw(ω,v, t), where λ > 0 and w(ω,v, t) is a bounded

continuous mapping from Ω̂ to L2(0, T ;V), we obtain

2λ

∫
Ω̂

(∫ T

0

e−ρ(t)〈χ(ω,v, t)−Θ(ξ(ω, t)− λw(ω,v, t)),w(ω,v, t)〉dt
)
dP̂(ω,v)

+λ2

∫
Ω̂

(∫ T

0

e−ρ(t)ρ̇(t)|w(ω,v, t)|2dt
)
dP̂(ω,v) ≥ 0. (4.15)

Since Θ is hemicontinuous, 〈Θ(ξ − λw),w〉 → 〈Θ(ξ),w〉 as λ→ 0; indeed,

〈Θ(ξ − λw),w〉 = 〈Θ(ξ),w〉 − λ〈Aw + B(ξ,w) + B(w, ξ),w〉+ λ2〈B(w),w〉.

Dividing (4.15) by λ, taking λ→ 0 and applying the dominated convergence theo-
rem, we get∫

Ω̂

(∫ T

0

e−ρ(t)〈χ(ω,v, t)−Θ(ξ(ω, t)),w(ω,v, t)〉dt
)
dP̂(ω,v) ≥ 0. (4.16)

Moreover, taking ζ(ω,v, t) = ξ(ω, t) +λw(ω,v, t), we can get the reverse inequality
of (4.16) so that∫

Ω̂

(∫ T

0

e−ρ(t)〈χ(ω,v, t)−Θ(ξ(ω, t)),w(ω,v, t)〉dt
)
dP̂(ω,v) = 0. (4.17)

Since (4.17) holds true for each bounded continuous function w, the conclusion (4.5)
is achieved.

Now we come back to the proof of main theorem. The Lemma 4.1 indeed show

that Φ̂(M̂f
t − M̂f

s ) ∈ C(Ω̂), for any Ĝs-measurable function Φ̂ ∈ Cb(Ω̂). In order to
pass the limit, we need the following.

Lemma 4.2 (see, [31]). Let Ω̂ be a Lusin space and P̂n be the sequence of probability

measures on Ω̂ converging weakly to a measure P̂ as n → ∞. Let g ∈ C(Ω̂) and

supn EP̂n

[|g|1+ε] ≤ C for some ε > 0. Then EP̂n

(g)→ EP̂(g) as n→∞.

Taking the estimate (4.4) and Lemma 4.1 into account, we can conclude from
Lemma 4.2 that

lim
n→∞

EP̂n

[Φ̂(M̂f
t − M̂f

s )] = EP̂[Φ̂(M̂f
t − M̂f

s )] = 0, for all t ≥ s,

whence M̂f
t is a locally square integrable càdlàg (Ω̂, Ĝt, P̂)-local martingale. From

the last equality and disintegration theorem for Radon measures on Lusin spaces,
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we can conclude that∫
Ω̂

Φ̂(ω,v)[M̂f
t (ω,v)− M̂f

s (ω,v)]dP̂(ω,v)

=

∫
Ω̃

Φ̂(ω,Θ(ω))[Mf
t (ω)−Mf

s (ω)]dP(ω),

and so EP[Φ̂(Mf
t −Mf

s )] = 0 for any F̃s measurable function Φ̂ ∈ Cb(Ω̃) and t ≥ s.
This completes the proof for 2D-case.

Now let us prove Theorem 2.1 for 3D bounded domain.

Proof of Theorem 2.1: (The domain O is bounded in R3). In view of the estimate
(2.23), it appears that Minty Stochastic Lemma 4.1 does not hold for 3D-case.
Indeed, from the energy estimate (Theorem 3.1) and (2.23) for d = 3, it is clear
that Θ(·) exists only in the space L4/3(0, T ;V′) and so it does’t make sense to define
(4.6). In view of 2D-case, we need the following lemma for the continuity of the

martingale Mf
t on Ω̃ and rest of the proof of existence of martingale solution follows

from the similar arguments of 2D-case.

Lemma 4.3. Let O be a bounded domain in R3. Let f be the tame function as in

Remark 2.1 with ϕ(·) ∈ C∞0 (Rm) and θk ∈ D(A), k = 1, · · · ,m. If un → u in Ω̃ for

the Lusin topology T , then Mf
t (un)→Mf

t (u) on Ω̃,∀t ∈ [0, T ].

Proof. For simplicity, let us restrict the proof to the case f(u(t)) = ϕ(〈u(t), θ0〉), θ0 ∈
D(A). Let un → u for the Lusin topology T . By suppressing the time dependence
of u(t), we write

Mf
t (un) = ϕ(〈un, θ0〉)− ϕ(〈un(0), θ0〉) (4.18)

+

∫ t

0

〈
νAun + B(un)− g, ϕ′(〈un, θ0〉)θ0

〉
ds

−1

2

∫ t

0

ϕ′′(〈un, θ0〉)tr
(
σ(s,un)Qσ∗(s,un)θ0 ⊗ θ0

)
ds

−
∫ t

0

∞∑
k=1

∫
|zk|<1

{
ϕ
(
〈un + φk(un, zk), θ0〉

)
− ϕ(〈un, θ0〉)

−〈φk(un, zk), ϕ′(〈un, θ0〉)θ0)〉
}
µk(dzk)ds

−
∫ t

0

∞∑
k=1

∫
|zk|≥1

{
ϕ
(
〈un + ψk(un, zk), θ0〉

)
− ϕ(〈un, θ0〉)

}
µk(dzk)ds.

Let Mf
t (un) :=

∑6
i=1 In,i and Mf

t (u) :=
∑6
i=1 Ii. Then we need to show that

|Mf
t (un) −Mf

t (u)| → 0 as n → ∞. The continuity of In,1 and In,2 follow easily
from the continuity of ϕ. Note that∫ T

0

〈
νAun, ϕ

′(〈un, θ0〉)θ0

〉
dt = −

∫ T

0

ν
〈
un(s),∆(ϕ′(〈un, θ0〉)θ0)

〉
dt

→ −
∫ T

0

ν
〈
u,∆(ϕ′(〈u, θ0〉)θ0)

〉
dt =

∫ T

0

〈
νAu, ϕ′(〈u, θ0〉)θ0

〉
dt,
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as un
s→ u in L2(0, T ;H). Observe that

〈B(un), ϕ′(〈un, θ0〉)θ0

〉
− 〈B(u), ϕ′(〈u, θ0〉)θ0

〉
= b(un − u,un, ϕ

′(〈un, θ0〉)θ0) + b(u,u− un, ϕ
′(〈un, θ0〉)θ0)

+b(u,u, (ϕ′(〈un, θ0〉)− ϕ′(〈u, θ0〉))θ0).

From (2.23), we obtain that∫ T

0

|b(un − u,un, ϕ
′(〈un, θ0〉)θ0)|dt ≤

∫ T

0

|ϕ′(〈un, θ0〉)||b(un − u,un, θ0)|dt

≤ C‖ϕ′‖L∞(R)|θ0|1/4‖θ0‖3/4
∫ T

0

|un − u|1/4‖un − u‖3/4‖un‖dt

≤ C‖ϕ′‖L∞(R)|θ0|1/4‖θ0‖3/4
(∫ T

0

|un − u|2dt
)1/8

×
(∫ T

0

‖un − u‖2dt
)3/8(∫ T

0

‖un‖2dt
)1/2

→ 0 as n→∞

since un
s→ u in L2(0, T ;H) and last two integrals are uniformly bounded. Making

use of Lemma 2.2 and the embedding H1 ↪→ L6 of (2.22), we get∫ T

0

|b(u,u− un, ϕ
′(〈un, θ0〉)θ0)|dt ≤

∫ T

0

|ϕ′(〈un, θ0〉)||b(u, θ0,un − u)|dt

≤ ‖ϕ′‖L∞(R)

∫ T

0

‖u‖L6‖∇θ0‖L3 |un − u|dt

≤ C‖ϕ′‖L∞(R)‖θ0‖1/2|Aθ0|1/2
∫ T

0

‖u‖|un − u|dt

≤ C‖ϕ′‖L∞(R)‖θ0‖1/2|Aθ0|1/2
(∫ T

0

‖u‖2dt
)1/2(∫ T

0

|un − u|2dt
)1/2

→ 0,

as n→∞ and∣∣∣ ∫ T

0

b(u,u, (ϕ′(〈un, θ0〉)− ϕ′(〈u, θ0〉))θ0)dt
∣∣∣

=
∣∣∣ ∫ T

0

[ ∫ 1

0

d

dr

(
ϕ′
(
r〈un(t), θ0〉+ (1− r)〈u(t), θ0〉

))
dr
]
b(u, θ0,u)dt

∣∣∣
≤ C‖ϕ′′‖L∞(R)‖θ0‖1/2|Aθ0|1/2

∫ T

0

|〈un − u, θ0〉|‖u‖|u|dt

≤ C‖ϕ′′‖L∞(R)|θ0|‖θ0‖1/2|Aθ0|1/2 sup
t∈[0,T ]

|u(t)|
(∫ T

0

‖u‖2dt
)1/2

×
(∫ T

0

|u− un|2dt
)1/2

→ 0 as n→∞.

By the argument similar to the above integral, we have∣∣∣ ∫ T

0

[ϕ′(〈un, θ0〉)− ϕ′(〈u, θ0〉)]〈g, θ0〉dt
∣∣∣ ≤ ‖ϕ′′‖L∞(R)|θ0|‖θ0‖

∫ T

0

|un − u‖g‖V′dt

since
( ∫ T

0
‖g(t)‖2V′dt

)1/2

<∞, the last integral also tends to zero.
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Next, we note that

|In,4 − I4| ≤
1

2

∫ T

0

|ϕ′′(〈un, θ0〉(t))|
∣∣‖σ(t,un(t))‖2LHS

− ‖σ(t,u(t))‖2LHS

∣∣dt
+

1

2

∫ T

0

|ϕ′′(〈un(t), θ0〉)− ϕ′′(〈u(t), θ0〉)|‖σ(t,u(t))‖2LHS
dt

≤ 1

2
‖ϕ′′‖L∞(R)

∫ T

0

∣∣‖σ(t,un(t))‖2LHS
− ‖σ(t,u(t))‖2LHS

∣∣dt
+

1

2
|θ0|T 1/2‖ϕ′′′‖L∞(R)Ñ2(1 + sup

t∈[0,T ]

|u(t)|2)
(∫ T

0

|un − u|2dt
)1/2

.

Here both integrals on the right hand side tend to zero due to the continuity [H1]

(in Assumption 2.1) on the first integral while un
s→ u in L2(0, T ;H) on the second

integral.
Finally, since ϕ ∈ C∞0 (R), we have for any p, q ∈ R

Φ(p, q) := ϕ(p+ q)− ϕ(p)− ϕ′(p)q = q2

∫ 1

0

(1− r)ϕ′′(p+ rq)dr

so that for any p1, p2 ∈ R

|Φ(p1, q)− Φ(p2, q)| =
∣∣q2

∫ 1

0

(1− r)[ϕ′′(p1 + rq)− ϕ′′(p2 + rq)]dr
∣∣

≤ ‖ϕ′′′‖L∞(R)q
2|p1 − p2|.

Besides, for any q1, q2 ∈ R, one can also obtain that

|Φ(p, q1)− Φ(p, q2)| ≤ ‖ϕ′′‖L∞(R)(|q1|+ |q2|)|q1 − q2|.

Taking p1 = 〈un, θ0〉, q = q1 = 〈φk(un, zk), θ0〉 and p = p2 = 〈u, θ0〉 and q2 =
〈φk(u, zk), θ0〉, we can obtain that

|In,5 − I5| ≤
∫ T

0

∞∑
k=1

∫
|zk|<1

{
|Φ(〈un, θ0〉, 〈φk(un, zk), θ0〉)

−Φ(〈u, θ0〉, 〈φk(un, zk), θ0〉)|
}
µk(dzk)dt

+

∫ T

0

∞∑
k=1

∫
|zk|<1

{
|Φ(〈u, θ0〉, 〈φk(un, zk), θ0〉)

−Φ(〈u, θ0〉, 〈φk(u, zk), θ0〉)|
}
µk(dzk)dt.
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From the preceding estimates and Assumption 2.2, we have

|In,5 − I5| ≤ ‖ϕ′′′‖L∞(R)|θ0|3
∫ T

0

|un − u|
∞∑
k=1

∫
|zk|<1

|φk(un, zk)|2µk(dzk)dt

+‖ϕ′′‖L∞(R)|θ0|2
∫ T

0

∞∑
k=1

∫
|zk|<1

(
|φk(un, zk)|

+|φk(u, zk)|
)
|φk(un, zk)− φk(u, zk)|µk(dzk)dt

≤

[
‖ϕ′′′‖L∞(R)|θ0|3N3

(
1 + sup

t∈[0,T ]

|un(t)|2
)√
T + 2T‖ϕ′′‖L∞(R)|θ0|2

×
√
N2N3

(
2T +

∫ T

0

(|u|2 + |un|2)dt
)1/2

](∫ T

0

|un − u|2dt
)1/2

.

Thus, |In,5 − I5| → 0 as n → ∞ due to the strong convergence of un → u
in L2(0, T ;H). We can similarly establish the continuity of the integral In,6 and
conclude the proof.

4.1. Existence of martingale solutions in unbounded domain. As we noticed
in section 3.3 that in the case of unbounded O, we have the tightness of measures
only in D(0, T ;Hw) and it is not sufficient to obtain the tightness in the strong
topology T4 of L2(0, T ;H). But in order to prove the Minty Stochastic Lemma 4.1,
we need the tightness in T4, in particular, to validate the continuity of the noise
terms. The existence of martingale solutions for the SNSEs (2.1) in unbounded
domain O, at least, in R2 without any compactness argument may be addressed as
follows.

Remark 4.1. If the noise terms are additive, that is, the noise coefficients are of
the form σ(t,u) = σ(t), φk(u, zk) = φk(zk) and ψk(u, zk) = ψk(zk), k = 1, 2, · · · ,
the proof of Lemma 4.1, and hence the existence of martingale solutions in 2D-case,
still hold since we have handled the nonlinearity coming from the drift term by
using the local monotonicity argument.

If the noise terms are multiplicative (once again for the case of unbounded O) to
get the stochastic Minty-Browder technique to work, we need to assume that the
mapping u → ‖σ(t,u)‖2LHS

is continuous for the weak topology of H along with
assumptions for the jump noise coefficients (see, for instance, [22]).

Remark 4.2. We note however that the existence of strong solutions for 2D sto-
chastic Navier-Stokes equations with multiplicative Gaussian noise (see, [33]) and
Itô-Lévy noise (see, [8]) in unbounded domain can be handled by local monotonicity
method without any weak continuity assumptions on the noise coefficients.

We solve the unbounded case by extending Theorem 2.1 for boundedO as follows.
We cut the unbounded domainO into a sequence of bounded domainsOi, i = 1, 2 · · ·
and construct martingale solutions Pi, i = 1, 2, · · · for the SNSEs (2.1) in each of
these bounded domains Oi and then show that in the limit the martingale solution
P for O exists. The construction we use here is a standard procedure and can be
found for example in [17] for various fluid flow problems in unbounded domain and
in [30] to prove the existence of generalized solutions for Navier-Stokes equations in
unbounded channel like domains.



388 KUMARASAMY SAKTHIVEL AND SIVAGURU S. SRITHARAN

Proof of Theorem 2.1: (The domain O is unbounded). Let Oi, i = 1, 2 · · · be the
nested, open bounded subsets O1 ⊂ O2 ⊂ · · · of O and ∪∞i=1Oi = O. We may take
Oi as O ∩ {|x| ≤ ri}. In each of these subdomains, we solve the following problem
(ui, pi) : Oi × [0, T ]→ Rd × R such that

dui + (−ν∆ui + ui · ∇ui +∇pi)dt = gdt+ σ(t,ui)dW

+

∞∑
k=1

∫
0<|zk|Z<1

φk,i
(
t,ui(t−), zk

)
π̃k(dt, dzk) (4.19)

+

∞∑
k=1

∫
|zk|Z≥1

ψk,i
(
t,ui(t−), zk

)
πk(dt, dzk) in Oi × (0, T )

with

∇ · ui = 0 in Oi × (0, T ),

ui = 0 on ∂Oi × (0, T ), ui(x, 0) = u0(x) in Oi.

This leads to a semimartingale formulation analogous to (2.10) and then by the
Galerkin approximation, we get the finite dimensional system similar to (3.1) in
each of these subdomains Oi. Let Pni be the measures on D(0, T ;V′) associated
with the finite dimensional processes uni . In view of the proof of Theorem 3.1, there

exist constants C̃ and C independent of the size of the domains Oi satisfying

EPn
i sup

0≤s≤t
|ξ(s)|2 + νEPn

i

∫ t

0

‖ξ(s)‖2ds (4.20)

≤ C̃
(
T, Ñ2, N3, ν,E|ξ(0)|2,

∫ T

0

‖g(t)‖2V′dt
)
,

and for all p ≥ 2

EPn
i sup

0≤s≤t
|ξ(s)|p + νEPn

i

∫ t

0

|ξ(s)|p−2‖ξ(s)‖2ds (4.21)

≤ C
(
p, T, Ñ2, N3, ν,E|ξ(0)|p,

( ∫ T

0

‖g(t)‖2V′dt
)p/2)

.

Following the proof of Proposition 3.1, we can show that the measures Pni are tight

in the Lusin space Ω̃ endowed with the topology T by extending the flow field to
zero outside Oi. In order to conclude that any limit measure P of the sequence Pni
is a solution of the martingale problem on O, it is sufficient show that Mf

t (ξ) is

continuous on Ω̃ and this follows from similar arguments we used earlier.

4.2. Pathwise uniqueness of solutions and uniqueness of the martingale
solutions.

Proof of Theorem 2.2. Let u and v be the two solutions of (2.10). For m > 0,
define

τ1
m = inf{t ≤ T ; |u(t)|2 ≥ m} and τ2

m = inf{t ≤ T ; |v(t)|2 ≥ m}.

Let us take τm = τ1
m ∧ τ2

m. Define the set Ωm = {ω ∈ Ω : |u(t)|2 < m}. Then we
obtain from the energy estimate that∫

Ωm

|u(t)|2dP (ω) +

∫
Ω\Ωm

|u(t)|2dP (ω) ≤ C,
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for some constant C > 0. So P (Ω\Ωm) = P{ω ∈ Ω : |u(t)|2 ≥ m} ≤ C
m . This

further leads to

P{τm < T} ≤ P
{
|u(t)|2 ≥ m

}
∨ P

{
|v(t)|2 ≥ m

}
≤ C

m
.

Hence lim supm→∞ P{τm < T} = 0 and so τm → T as m → ∞, a.s. For notation

simplicity, define w = u−v, σ̃ = σ(t,u)−σ(t,v), φ̃k = φk(u(t−), zk)−φk(v(t−), zk)

and ψ̃k = ψk(u(t−), zk)− ψk(v(t−), zk), k = 1, 2 · · · . Then, we have

w(t) = w(0)−
∫ t

0

(
[Θ(u(s))−Θ(v(s))]−

∞∑
k=1

∫
|zk|≥1

ψ̃kµk(dzk)
)
ds+ M̄t,

where Θ(u) = νAu + B(u) and the local martingale

M̄t =

∫ t

0

σ̃dW(s) +

∫ t

0

( ∞∑
k=1

∫
|zk|<1

φ̃kπ̃k(ds, dzk) +

∞∑
k=1

∫
|zk|≥1

ψ̃kπ̃k(ds, dzk)
)
ds.

Applying the Itô formula (see, [26]) to |w(t)|2, we get

|w(t)|2 = |w(0)|2 − 2

∫ t

0

〈Θ(u(s))−Θ(v(s)),w(s)〉ds

+2

∫ t

0

〈 ∞∑
k=1

∫
|zk|≥1

ψ̃kµk(dzk),w(s)
〉
ds+ [M̄]t + 2

∫ t

0

(w(s), dM̄s).

Using the estimate (2.21), note that

|〈B(u)−B(v),w〉| = |b(w,v,w)| ≤ ‖w‖2L4(O)‖v‖

≤ C|w|(4−d)/2‖w‖d/2‖v‖

≤ ν

2
‖w‖2 + Cν‖v‖4/(4−d)|w|2, for d = 2, 3.

So from Assumption 2.2, we arrive at

|w(t)|2 ≤ |w(0)|2 − ν
∫ t

0

‖w(s)‖2ds+ 2Cν

∫ t

0

‖v(s)‖4/(4−d)|w(s)|2ds

+(1 + CµN2)

∫ t

0

|w(s)|2ds+ trJM̄Kt + 2

∫ t

0

(w(s), dM̄s),

where Cµ =
∑∞
k=1

∫
|zk|≥1

µk(dzk). Taking ρ(t) = 2Cν
∫ t

0
‖v(s)‖4/(4−d)ds, d = 2, 3

the Itô formula again applied to e−ρ(t)|w(t)|2 along with the preceding estimate
give

e−ρ(t)|w(t)|2+ν

∫ t

0

e−ρ(s)‖w(s)‖2ds ≤ |w(0)|2 + (1 + CµN2)

∫ t

0

e−ρ(s)|w(s)|2ds

+

∫ t

0

e−ρ(s)d(trJM̄Ks) + 2

∫ t

0

e−ρ(s)(w(s), dM̄s). (4.22)
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Let τm be the stopping time localizing the martingale
∫ t

0
e−ρ(s)(w(s), dM̄s). From

Assumptions 2.1, 2.2 and Lemma 2.7, we note that

E
∫ t∧τm

0

e−ρ(s)d(trJM̄Ks) = E
∫ t∧τm

0

e−ρ(s)d(tr� M̄�s)

= E
∫ t∧τm

0

e−ρ(s)tr(σ̃Qσ̃∗)ds

+E
∫ t∧τm

0

e−ρ(s)
( ∞∑
k=1

∫
|zk|<1

|φ̃|2µk(dzk) +

∞∑
k=1

∫
|zk|≥1

|ψ̃|2µk(dzk)
)
ds

≤ (Ñ1 +N2)E
∫ t∧τm

0

e−ρ(s)|w(s)|2ds.

Taking into account that the expectation of the local martingale is zero, we have

E[e−ρ(t∧τm)|w(t ∧ τm)|2] ≤ E|w(0)|2 + C̄

∫ t

0

E[e−ρ(s∧τm)|w(s ∧ τm)|2]ds,

where C̄ = (1 + Ñ1 +N2 + CµN2). Therefore, by Gronwall’s inequality, we deduce
that

E[e−ρ(t∧τm)|w(t ∧ τm)|2] ≤ exp(C̄T )E|w(0)|2.
Eventually taking the conditions (i) and (ii) into account, the data w(0) = 0 leads
to w(t ∧ τm) = 0 a.s. But the fact that τm → T as m → ∞ gives w(t) = 0 =⇒
u(t) = v(t) for all t ∈ [0, T ] a.s. Hence the proof.

5. Concluding remarks. We remark here that mathematically similar problems
such as MHD equations (Chandrasekhar [4], Sritharan and Sundar [32]), regularized
Navier-Stokes equations (Ou and Sritharan [24]), tamed Navier-Stokes equations
(Leray [19], Sritharan and Sundar [33]) and combustion models (Temam [37]) etc.
can fit in the abstract mathematical model (2.10) and hence this paper establishes
the solvability of martingale problems for all these classes of problems subjected to
Lévy noise.
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