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INTEGRATION OF EXACT COURANT ALGEBROIDS

DAVID LI-BLAND AND PAVOL ŠEVERA

(Communicated by Alejandro Uribe)

Abstract. In this paper, we describe an integration of exact Courant alge-

broids to symplectic 2-groupoids, and we show that the differentiation proce-
dure from [32] inverts our integration.

1. Introduction

A Courant algebroid is a Lie 2-algebroid paired with a compatible symplectic
structure [26–31]. Therefore, in the study of Courant algebroids two immediate
questions are

Question 1: What is the global object “integrating” a Courant algebroid?
Question 2: How do you “differentiate” the global object to recover the

Courant algebroid?

Question 1 was first addressed in [31], where, given a Courant algebroid, a con-
struction of a 2-groupoid carrying a symplectic form on the 2-simplices is sketched
(see also [35]). Unfortunately, this construction was infinite dimensional. A proce-
dure to differentiate Lie n-groupoids to Lie n-algebroids is described in [32], giving
an answer to Question 2. However, this differentiation procedure does not invert
the integration procedure described in [31] “on the nose”.

Although the answer to the Question 1 might be somewhat complicated, it has
a simple solution for some of the most popular Courant algebroids, namely exact
Courant algebroids [33]. For instance, an elegant solution for exact Courant al-
gebroids with trivial characteristic class is presented in [24] in terms of the “bar”
construction. In this paper, we present a solution for arbitrary exact Courant alge-
broids. Our construction results in a (local) Lie 2-groupoid carrying a symplectic
form on the space of 2-simplices. Furthermore, we show that if one differentiates
our construction (as in [32]), one recovers the original Courant algebroid.

The idea of our construction is as follows. As a differential graded manifold, the
standard Courant algebroid over a manifold M is T [1]T ∗[1]M . Since it is of the form
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T [1]X for some graded manifold X (X = T ∗[1]M), the problem of its integration
to a local 2-groupoid K• has a simple solution (see Remark 5). Next we construct
a symplectic form on K2 making K• into a (local) 2-symplectic 2-groupoid which
differentiates to the standard Courant algebroid.

We then prove that an arbitrary exact Courant algebroid over M is isomorphic,
as a differential graded manifold, to the standard one. We can therefore use the
same 2-groupoid K• as its integration. The isomorphism is not, however, a symplec-
tomorphism. We compute the modification to the symplectic form on T [1]T ∗[1]M
and modify the symplectic form on K2 correspondingly.

In [34], a more conceptual explanation for our construction is given, related to
the work of Mehta, Gracia-Saz, Arias Abad, Crainic and Schaetz on actions up to
homotopy [1, 2, 15,16] (see also [35]).

2. Background

Remark 1 (A note on Lie groupoids and Lie algebroids). We use the definitions
of (local) Lie n-groupoids given by Andre Henriques and Chenchang Zhu [17, 37],
in terms of simplicial manifolds. We take the definition of Lie n-algebroids given
in [32] in terms of NQ-manifolds.

In this section, we recall the differentiation procedure described in [32] which
takes Lie n-groupoids to Lie n-algebroids.

2.1. Simplicial Manifolds. For n ∈ N, let [n] be the category generated by the
directed graph

0→ 1→ · · · → n,

and ∆ the full subcategory of Cat (the category of small categories) generated by
the objects [0], [1], [2], . . . . We have the distinguished functors [14]

sj(0→ 1→ · · · → n+ 1) = (0→ 1→ · · · → j
id−→ j → · · · → n),

(that is, we insert the identity in the jth place), and

di(0→ 1→ · · · → n− 1) = (0→ 1→ · · · → i− 1→ i+ 1→ · · · → n),

(that is, we compose i−1→ i→ i+ 1). We denote the corresponding maps in ∆op

by sj and di.

Let Man be the category of smooth manifolds. Then Man∆op

is the category of
simplicial manifolds. More generally, if C is any category, then C∆op

is the category
of simplicial objects (in C).

As a quick word on notation, if X ∈ C∆op

, then it is conventional to write
Xn := X([n]).

Example 1. The standard n-simplex, ∆n, is the contravariant functor

∆n := Cat(·, [n]) ∈ Set∆
op

⊂ Man∆op

(where sets are viewed as discrete manifolds).

Example 2. The kth horn Λnk ⊂ ∆n is defined as

(Λnk )([j]) = {f ∈ ∆n([j]) | dk([n]) * f([j])}.

We may think of Λnk as the boundary of the standard n-simplex ∆n with the kth

face removed.
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Let M• be a simplicial manifold. The natural inclusion Λnk ⊂ ∆n induces a map

(2.1) Man∆op

(∆n,M•)→ Man∆op

(Λnk ,M•).

The Kan conditions [17] are

Kan(n, k) : (2.1) is a surjective submersion,Kan!(n, k) : (2.1) is adiffeomorphism.

The following definition is due to Henriques [17].

Definition 1 ( [17]). A Lie n-groupoid is a simplicial manifold M• satisfying

• Kan!(m, k) for m > n and 0 ≤ k ≤ m, and
• Kan(m, k) for m > 0 and 0 ≤ k ≤ m.

In particular, a Lie 1-groupoid is the nerve of a Lie groupoid. For instance, the
nerve of the pair groupoid (defined explicitly in the following example) is a Lie
1-groupoid.

Example 3. There is a full and faithful functor E : Man → Man∆op

given by
EnM = Mn+1 and

EM(f) : (z0, . . . , zm)→ (zf(0), . . . , zf(n)),

for any monotone map f : [n]→ [m].

We will be interested in the local version of n-groupoids, as introduced by
Zhu [37]. However, as suggested by a referee, we will reformulate it in terms of
the microfolds introduced by Cattaneo, Dherin, and Weinstein [9] and Blohmann,
Fernandes, and Weinstein [4] following Milnor [25].

Definition 2. A microfold is an equivalence class of pairs (M,S) of manifolds such
that S ⊆ M is a closed submanifold. Two such pairs (M1, S1) and (M2, S2) are
said to be equivalent if S1 = S2 = S and there exists a third pair (U, S) such that
U is simultaneously an open subset of both M1 and M2. We denote the equivalence
class by [M,S], and refer to S as the microfold core of [M,S].

A morphism between microfolds is a germ of maps between representatives which
takes the source microfold core to the target microfold core. Such a morphism is
said to be a surjective submersion (resp. a diffeomorphism) if it is a surjective
submersion (resp. a diffeomorphism) for a suitable choice of representatives.

We denote the category of microfolds by Mfold. There is a forgetful functor
Fcore : Mfold→ Man which takes a microfold [M,S] to its microfold core S.

Definition 3. The category Man∆op

loc of local simplicial manifolds (or simplicial
manifold germs) is the subcategory of functors [M•, S•] : ∆op → Mfold such that

• M0 = S0, and
• the composition Fcore ◦ [M•, S•] := S• with the forgetful functor is a con-

stant functor.

We will denote a local simplicial manifold [M•, S•] := [M•,M0] simply by [M•].

Working with microfolds in place of manifolds, one obtains direct analogues of
Henriques’ Kan conditions [17] for local simplicial manifolds. Thus one obtains the
following definition of a local Lie n-groupoid, essentially a reformulation of the one
by Zhu [37].

Definition 4. A local Lie n-groupoid is a local simplicial manifold [M•] satisfying
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• Kanl!(m, k) for m > n and 0 ≤ k ≤ m, and
• Kanl(m, k) for m > 0 and 0 ≤ k ≤ m.

There is a forgetful functor [·] : Man∆op

→ Man∆op

loc which takes a simplicial
manifold M• to its germ [M•] := [M•,M0]. It restricts to a functor from Lie
n-groupoids to local Lie n-groupoids.

2.2. NQ-manifolds. An NQ-manifold is a differential non-negatively graded man-
ifold. We recall a reformulation of this definition from [32].

We let SMan denote the category of super-manifolds. Let θ be the standard
coordinate on the odd line R0|1. A general map

R0|1 → R0|1, θ → ξ + sθ

can be identified with an element (s, ξ) ∈ R1|1. The corresponding super-semi-group
End(R0|1) := SMan(R0|1,R0|1) ∼= R1|1 carries the multiplication

(s, ξ) · (t, η) = (st, ξ + sη), s, t ∈ R, ξ, η ∈ R0|1.

Definition 5 ( [19, 20, 31]). An NQ-manifold [19, 20, 31] is a super-manifold X ∈
SMan with an action of End(R0|1) such that (−1, 0) acts as the parity operator (it
just changes the sign of the odd coordinates). In this context, a function f ∈ C∞(X)
has degree |f | := k if

(s, 0) · f = skf.

Note that the degree of a function is always a non-negative integer. Furthermore,
the homological vector field Q on X is defined by

Q : f → ∂

∂ξ

(
(0, ξ) · f

)
.

The manifold (0, 0) ·X ⊂ X is called the base of X.
An N -manifold is a super-manifold X ∈ SMan with an action of the multiplica-

tive semi-group R such that (−1, 0) acts as the parity operator.
Finally, a bi-NQ-manifold is a super-manifold X ∈ SMan with an action of(

End(R0|1)
)2

such that
(
(−1, 0), (−1, 0)

)
acts as the parity operator. A function

f ∈ C∞(X) has degree |f | := (k, l) if
(
(s, 0), (t, 0)

)
· f = sktlf . Additionally, X is

said to be concentrated in the second grading if
(
(0, 0), (1, 0)

)
acts by the identity

on X.

We let SManNQ and SManN denote the categories of NQ-manifolds and N -
manifolds, respectively. Definitions 2 and 3 also extend in the obvious way to

define the categories SMfoldNQ, SMfoldN ,
(

SManNQ
)∆op

loc
and

(
SManN

)∆op

loc
of

NQ-microfolds, N -microfolds, and local simplicial NQ and N -manifolds, respec-
tively.

Example 4. If M is any manifold, then the pre-sheaf SMan(· × R0|1,M) is repre-
sented by the super-manifold T [1]M . The natural action of End(R0|1) on SMan(·×
R0|1,M) is such that (−1, 0) acts as the parity operator. Therefore T [1]M is an
NQ-manifold.

In fact C∞(T [1]M) = Ω•(M) and the homological vector field on T [1]M is just
the de Rham differential QdeRham = d.
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2.3. The Functor 1-Jet : Man∆op

loc → ŜMan. In this section, we recall the func-

tor 1-Jet, which maps the category of local simplicial manifolds, Man∆op

loc , to the

category of presheaves of supermanifolds, ŜMan := Sets(SManop) (where Sets is the
category of sets).

Suppose that [M•] ∈ Man∆op

loc , then (following [32]) we define

(2.2) 1-Jet([M•])(X) = SMfold∆op

([X × E•R0|1], [M•]), for any X ∈ SMan .

Since E•R0|1 carries a natural action of End(R0|1), so does 1-Jet([M•]) ∈ ŜMan.
Furthermore, we have

Proposition 1 ( [32]). If [M•] is a local Lie n-groupoid, then 1-Jet([M•]) is rep-
resentable, therefore 1-Jet([M•]) ∈ SManNQ.

Remark 2. Note that 1-Jet is not a faithful functor. In general, for n > 1, there are
more morphisms between local Lie n-groupoids than between their corresponding
NQ-manifolds (see Remark 4 for a relevant example). Furthermore, the composi-
tion

M• → [M•]→ 1-Jet([M•])

from Lie n-groupoids to NQ-manifolds already fails to be full for n = 1 (see the
work Crainic and Fernandes [12]).

Definition 6. We say that a local Lie n-groupoid [M•] integrates an NQ-manifold
X if 1-Jet([M•]) ∼= X. Similarly, we say that a Lie n-groupoid M• integrates an
NQ-manifold X if 1-Jet([M•]) ∼= X.

Example 5. Since the functor E : Man → Man∆op

from Example 3 is full and
faithful, E•M integrates T [1]M .

Example 6. If G is a Lie group and g is its Lie algebra, then the nerve of G
integrates the NQ-manifold g[1]. More generally, if Γ is a Lie groupoid and A the
corresponding Lie algebroid, then (the nerve of) Γ integrates A[1].

Example 7. Let Vectf (R) denote the category of finite dimensional vector spaces

over R, Ch+(Vectf (R)) the positively graded chain complexes and V ∈ Vectf (R).
The Dold-Kan correspondence

N :
(

Vectf (R)
)∆op

� Ch+(Vectf (R)) : Γ

defines the Eilenberg-Mac Lane object K(V, n) := Γ(V [−n]), which we view as a
simplicial manifold.

Concretely,
(2.3)
K(V, n)k :=

{
{vf}f :[n]→[k] | vf ∈ V, vf = 0 if f is not injective,

and for every g : [n+ 1]→ [k],
∑n+1
i=0 (−1)ivg◦di = 0

}
and for any monotone map h : [l]→ [k],

K(V, n)(h) : K(V, n)k → K(V, n)l

(
{vf}f :[n]→[k] → {v′f ′ := vh◦f ′}f ′:[n]→[l]

)
.

The following picture can be useful. An element of K(V, n)k is a labelling of
the n dimensional faces of the standard k simplex by elements of V , so that the
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alternating sum around any n + 1 dimensional face is zero. Note that we have a
diffeomorphism V ∼= K(V, n)n given by

(2.4) v →
{
vf =

{
v if f = id : [n]→ [n]
0 otherwise.

}}
f :[n]→[n]

.

K(V, n) integrates the NQ-manifold V [n] (with trivial Q-structure). For any
v ∈ V [n], the corresponding map EkR0|1 → K(V, n)k is given by

(2.5) (θ0, . . . , θk)→
{
vf := v

(∑n
i=0(−1)iθf◦di(0) · · · θf◦di(n−1)

)}
f :[n]→[k]

.

2.3.1. Multiplicative Forms. Following [5–8, 11, 13, 18] we make the following defi-
nition of multiplicative forms on a simplicial manifold.

Definition 7. Let M• be a (local) simplicial manifold. We say that a k-form
α ∈ Ωk(Mn) is multiplicative if for any 0 ≤ i < n, s∗iα = 0, and Dα = 0, where

(2.6) D :=

n∑
i=0

(−1)id∗i : Ωk(Mn)→ Ωk(Mn+1)

is the simplicial differential.

In the spirit of [5, 6, 22, 23, 36] we would like to interpret Definition 7 in terms
of morphisms of simplicial manifolds. But first we need to point out that one can
extend the functor 1-Jet to (local) simplicial NQ-manifolds,

1-Jet :
(

SManNQ
)∆op

loc
→ ŜMan,

by the same formula (2.2).
If X• is a (local) simplicial NQ-manifold, then 1-Jet([X•]) carries an action of(

End(R0|1)
)2

. Specifically, in the formula

1-Jet([X•])(Z) = SMan∆op

([Z × E•R0|1], [X•]), (for any Z ∈ SMan),

End(R0|1)× (1, 0) acts directly on the factor X• and (1, 0)×End(R0|1) acts directly
on the factor R0|1.

Just as certain (local) simplicial manifolds integrate NQ-manifolds, certain (lo-
cal) simplicial NQ-manifolds integrate bi-NQ-manifolds.

We will be interested in the following example.

Example 8. Suppose that M• is a (local) simplicial manifold integrating the NQ-
manifold X. View X as a bi-NQ-manifold concentrated in the second grading.
Then T [1]M• integrates T [1, 0]X. (This follows immediately from the definition of
1-Jet and the fact that T [1, 0]N represents the pre-sheaf SMan(· ×R[−1, 0], N) for
any N ∈ SMan).

Recall that a k-form α ∈ Ωk(M) can be thought of as a (grading-preserving)
function α : T [1]M → R[k].

Lemma 1. Let M• be a (local) simplicial manifold, and α a k-form α ∈ Ωk(Mn).
The corresponding map

(2.7) α : T [1]Mn → R[k] ∼= K(R[k], n)n

extends to a simplicial map to the Eilenberg-Mac Lane object (2.3),

(2.8) α̂ : T [1]M• → K(R[k], n)•,

if and only if α is multiplicative. In this case, the extension (2.7) is unique.
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Proof. First, we will compute the unique extension α̂ (assuming it exists).
Using (2.4), we see that for x ∈ T [1]Mn, (2.7) is given by

α̂(x) =

{
v′f ′ =

{
α(x) if f ′ := id

0 otherwise.

}}
f ′:[n]→[n]

.

Let y ∈ T [1]Ml, and suppose α̂(y) = {vf}f :[n]→[l]. Then for an arbitrary map
g : [n]→ [l],

(2.9) {v′f ′ := vg◦f ′}f ′:[n]→[n] = K(R[k], n)(g) ◦ α̂(y)

= α̂ ◦ T [1]M•(g)(y) =

{
v′f ′ :=

{
α ◦ T [1]M•(g)(y) if f ′ = id

0 otherwise.

}}
f ′:[n]→[n]

.

Therefore vg = α ◦ T [1]M•(g)(y). It follows that α̂ must be defined by

(2.10) α̂(y) = {vf := α ◦ T [1]M•(f)(y)}f :[n]→[l],

for any y ∈ T [1]Ml. We let vf (y) := α ◦ T [1]M•(f)(y).
Note that if f : [n] → [l] is not injective, we can factor f = h ◦ si for some

0 ≤ i < n and h : [n− 1]→ [l]. Hence vf (y) = 0 if s∗iα = 0. It follows that s∗iα = 0
for every 0 ≤ i < n, if and only if vf (y) = 0 for every y ∈ T [1]Ml and f : [n]→ [l]
non-injective.

Using (2.10), we see that for any g : [n+ 1]→ [l], and any y ∈ T [1]Ml,

n+1∑
i=0

(−1)ivg◦di(y) =
( n+1∑
i=0

(−1)iα ◦ T [1]M•(d
i)
)
◦ T [1]M•(g)(y).

So
∑n+1
i=0 (−1)ivg◦di(y) = 0 for any g : [n+ 1]→ [l], and any y ∈ T [1]Ml if and only

if
n+1∑
i=0

(−1)iα ◦ T [1]M•(d
i) = 0⇔ Dα = 0.

Comparison with Example 7 shows that (2.10) defines a simplicial map if and
only if s∗iα = 0 and Dα = 0, that is α is multiplicative. �

As a consequence, if M• integrates an NQ-manifold X, and

α ∈ Ωk(Mn), α̂ : T [1]M• → K(R[k], n)

is a multiplicative k-form, then

1-Jet(α̂) : T [1, 0]X → R[k, n]

is a morphism of bi-graded Q-manifolds. That is, 1-Jet(α̂) defines a Q-invariant
k-form of degree n on X. Moreover, 1-Jet(α̂) is closed whenever α is.

2.4. Courant algebroids. Recall [27, 31] that a Courant algebroid is a NQ-
manifold X carrying a Q-invariant symplectic form ωX ∈ Ω2(X) of degree 2. If M
is the base of X, then X is said to be a Courant algebroid over M .
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2.4.1. Standard Courant Algebroid. Let M be a manifold. T ∗[2]T [1]M carries the
canonical symplectic form ω of degree 2. The homological vector field on T [1]M ,
QdeRham, lifts in the canonical way to define a Q-structure on T ∗[2]T [1]M . There-
fore (T ∗[2]T [1]M,Q,ω) is a Courant algebroid, called the standard Courant alge-
broid.

For later reference, we describe (T ∗[2]T [1]M,Q,ω) explicitly in coordinates. Let
xa (a = 1, . . . , d = dim(M)) be local coordinates on M . We take ξa := dxa to be
the coordinates on T [1]M canonically associated to xa. On the cotangent bundle
T ∗[2]T [1]M , we take pa, ηa to be the canonical coordinates associated to xa, ξa.

Remark 3 (Some Shorthand Notation). As a shorthand, we will denote a point
with coordinates(

(x1, . . . , xd); (ξ1, . . . , ξd); (p1, . . . , pd); (η1, . . . , ηd)
)
∈ Rd × R[1]d × R[2]d × R[1]d

by (xα, ξα, pα, ηα).
Furthermore, if {τa1...ak}{1≤a1,...,ak≤d} ⊂ C∞(M), we will often use

τ[a1...ak] :=
1

k!

∑
σ∈Σk

(−1)sign(σ)τσ(a1)...σ(ak),

as another shorthand, where Σk denotes the permutation group of {1, . . . , k} and
sign : Σk → Z2 is the unique non-trivial group morphism.

Finally, we will also invoke Einstein’s summation convention, summing over re-
peated upper and lower indices.

Using Einstein’s summation convention, the symplectic form can be written

(2.11) ω := dpadx
a + dηadξ

a,

and the homological vector field is

(2.12) Q := ξa∂xa + pa∂ηa = Xξapa .

The corresponding Poisson bracket is defined on coordinates by

{pa, xb} = δba, {ηa, ξb} = δba, where δba :=

{
1 if a = b
0 otherwise.

(and the Poisson bracket of any other pair of coordinates is equal to zero).

2.4.2. Exact Courant Algebroids. Exact Courant algebroids were first introduced
in [33]. We recall the construction described in [21, 28]. Let κ ∈ Ω3

cl(M) be a
closed 3-form. Under the identification C∞(T [1]M) ∼= Ω•(M), we may view κ as
a degree 3 function on T [1]M . If q : T ∗[2]T [1]M → T [1]M is the projection, then
q∗κ satisfies the Maurer-Cartan equation

Qq∗κ+
1

2
{q∗κ, q∗κ} = 0

(with both terms vanishing identically).
Therefore, with Xκ := {q∗κ, ·},

Qκ := Q+Xκ

defines a new homological vector field on T ∗[2]T [1]M , preserving the symplectic
structure. The triple (T ∗[2]T [1]M,Qκ, ω) is a Courant algebroid, called the exact
Courant algebroid with background 3-form κ.
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2.4.3. Gauge Transformations. Suppose that β ∈ Ω2(M) is a 2-form. The time-
1 Hamiltonian flow along Xβ := {q∗β, ·} preserves the symplectic structure, but
deforms the homological vector field Qκ to

ead(Xβ)(Qκ) = (1 + [Xβ , ] +
1

2
[Xβ , [Xβ , ·]] + · · · )(Q+Xκ) = Q+Xκ−dβ .

Consequently, the time-1 Hamiltonian flow eXβ defines an isomorphism of Courant
algebroids

(2.13) eXβ : (T ∗[2]T [1]M,Qκ, ω)→ (T ∗[2]T [1]M,Qκ−dβ , ω).

In particular, if β is closed, eXβ defines an automorphism of Courant algebroids.
Furthermore, (2.13) shows that the isomorphism class of (T ∗[2]T [1]M,Qκ, ω) de-
pends only on the cohomology class of κ. Any Courant algebroid isomorphic to
(T ∗[2]T [1]M,Qκ, ω) is called an exact Courant algebroid with characteristic class
[κ] ∈ H3(M).

Definition 8. A strictly-2-symplectic local Lie 2-groupoid over a manifold M is a
pair ([X̂•], ωX̂), where [X̂•] is a local Lie 2-groupoid with [X̂0] = M and ωX̂ ∈
Ω2([X̂2]) is a multiplicative symplectic form.

([X̂•], ωX̂) integrates the Courant algebroid (X,ωX) if

(2.14) 1-Jet([X̂•]) = X, and 1-Jet(ω̂X̂) = ωX .

Remark 4. Suppose ([X̂1
• ], ωX̂1) and ([X̂2

• ], ωX̂2) are two integrations of a Courant
algebroid (X,ωX). Since 1-Jet is not faithful, we cannot expect a unique diffeo-

morphism φ : [X̂1
• ]→ [X̂2

• ] to exist such that the following diagram commutes

(2.15) [T [1, 0]X̂1
• ]

dφ //

ω̂X̂1

��

[T [1, 0]X̂2
• ]

ω̂X̂1

��
K(R[2], 2) // K(R[2], 2)

That is, it is possible that no symplectomorphism

φ : [X̂1
• ]→ [X̂2

• ]

satisfying 1-Jet(φ) = id exists; and if it does exist, it need not be unique. In

particular, the symplectic form ωX̂ on [X̂2] is not unique, in general.
For example, in § 3, we will construct a strictly-2-symplectic (local) 2-groupoid

([X̂1
• ], ωX̂1) := ([T ∗• M ], ωT )

integrating (X,ωX) := (T ∗[2]T [1]M,ω), the standard Courant algebroid. Mean-

while, Mehta and Tang [24] have constructed a Lie 2-groupoid X̂2
• together with a

closed multiplicative 2-form ωX̂2 ∈ Ω2(X̂2
• ) such that (2.14) also holds. Moreover,

as we shall explain in Remark 6, there is a canonical map φ : [X̂1
• ] → [X̂2

• ] such
that 1-Jet(φ) = id.

However, the 2-form, ωX̂2 , they construct is degenerate, even along X̂2
0 ⊂ X̂2

2 .

Hence, there exists no map φ : [X̂1
• ]→ [X̂2

• ] such that (2.15) commutes.
This suggests that a more flexible definition of (local) symplectic 2-groupoids

is needed, which interprets diagrams such as (2.15) in terms of appropriate 2-
morphisms. We plan to address this issue in a future paper.
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The remainder of this paper will be devoted to constructing strictly-2-symplectic
(local) 2-groupoids integrating standard and exact Courant algebroids.

Remark 5. If we ignore the symplectic structure, there is a very simple construction
of a simplicial manifold integrating the standard and exact Courant algebroids.
However, integrating the symplectic form is slightly more challenging, and the bulk
of the work in this note will be spent doing this.

There is a natural isomorphism of NQ-manifolds T ∗[2]T [1]M ∼= T [1]T ∗[1]M
(see § 4). In general, if V →M , V = V −1 ⊕ · · · ⊕ V −m, is a graded vector bundle
concentrated in negative degrees then it is easy to describe an integration I• of
T [1]V such that I• is a Lie m + 1-groupoid. In the special case V = T ∗[1]M the
simplicial manifold I• is (locally) isomorphic to the simplicial manifold T ∗• M we
will construct in § 3.

The simplicial manifold I• is defined as follows: a point in Ik is a k + 1-tuple
(x0, . . . , xk) of points of M together with a choice of vφ ∈ V −lxφ(0)

for every monotone

map φ : [l]→ [k] (for every l), such that vφ = 0 for every non-injective φ.
As explained by Mehta and Tang [24], this construction has the following more

conceptual explanation: V can be viewed as a bundle of non-negatively graded
chain complexes (with trivial differential). Using the Dold-Kan correspondence
pointwise (cf. Example 7), we get a bundle Γ(V )• of simplicial vector spaces over
M . Next we note that the bisimplicial manifold E•Γ(V )• integrates the bi-NQ-
manifold T [1, 0]V . Finally, one obtains the simplical manifold I• := W

(
E•Γ(V )•

)
by applying the bar construction functor W : Man∆2op

→ Man∆op

described in
[3, 10,24].

The fact that I• := W (E•Γ(V )•) integrates T [1]V follows directly from the
fact that 1-Jet intertwines the functor W with the ‘total-grading’ functor from
bi-NQ-manifolds to NQ-manifolds induced by the diagonal inclusion End(R0|1) ⊂
End(R0|1)2.

3. Integration of the Standard Courant Algebroid

Let M be a manifold. In this section we construct a local strictly-2-symplectic
2-groupoid integrating T ∗[2]T [1]M , the standard Courant algebroid over M . To
do this, we first choose a connection on M . Let U ⊂ M × M be a symmetric
neighbourhood of the diagonal such that for any (x, y) ∈ U there exists a unique
geodesic

γx,y : [0, 1]→M, such that γx,y(0) = x, γx,y(1) = y, and (x, γx,y(t)) ∈ U.

For t ∈ [0, 1] let qt : U → M be given by qt(x, y) = γx,y(t). We define W :=
q∗1/2T

∗M . Notice that, using the parallel transport, we can identify W with Wt :=

q∗t T
∗M for any t ∈ [0, 1].

Let U2 ⊂ M3 be given by U2 = {(x, y, z)|(x, y), (x, z), (y, z) ∈ U}. We have a
map m : U2 →M3 given by

m : (x, y, z) 7→
(
q1/2(x, y), q1/2(y, z), q1/2(z, x)

)
.

We shall suppose that U is such that m is an injective local diffeomorphism.
Similarly, we let Un ⊂ Mn+1 = EnM be given by Un = {(z0, . . . , zn) | (zi, zj) ∈

U, ∀0 ≤ i, j ≤ n}. It is clear that U• ⊂ E•M is a simplicial submanifold.
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Figure 1. The local 2-groupoid [T ∗• M ]. (Here zi ∈M and wi,j ∈W(zi,zj).)

3.1. The 2-groupoid. We now construct a simplicial manifold T ∗• M which inte-
grates T ∗[2]T [1]M . We define it by

T ∗nM := {
(
(z0, . . . , zn); {wi,j}0≤i,j≤n

)
such that (zi, zj) ∈ U,

and wi,j ∈W(zi,zj) for all 0 ≤ i, j ≤ n and wi,j = −wj,i for all i, j}.

For any monotone map f : [n]→ [m] we define T ∗(f) : T ∗mM → T ∗nM by(
(z0, . . . , zm); {wi,j}0≤i,j≤m

)
7→
(
(zf(0), . . . , zf(n)); {w′i,j}0≤i,j≤n

)
where w′i,j := wf(i),f(j).

In the sequel, when describing an element of T ∗nM , we will often omit the terms
wii ≡ 0, since they are always 0. We can visualize T ∗• M graphically as in Figure 1.
It is clear that [T ∗• M ] is a local 2-groupoid since simplices are fully determined by
their 0 and 1 dimensional faces.

Recall the simplicial manifold E•M defined in Example 3. We remark that T ∗• M
is a simplicial vector bundle over U•, an open simplicial submanifold of E•M , with
the projection

(3.1) qT :
(
(z0, . . . , zn); {wi,j}0≤i,j≤n

)
→ (z0, . . . , zn).

Remark 6. If one replaces the vector bundle W := W 1
2

with T ∗M ×M ⊇ W0, the

construction of T ∗• M described above is formally identical to the construction of
the simplicial manifold I• described in Remark 5. Since parallel transport defines
an isomorphism W ∼= W0, we get a canonical embedding of simplicial manifolds
T ∗• M ⊆ I•. Note that I• is precisely the Lie 2-groupoid described by Mehta and
Tang [24].

Remark 7. Recall that one can integrate T ∗[2]T [1]M to an infinite dimensional
simplicial manifold X• [31], whose n-simplices are

Xn = SManNQ
(
T [1]|∆n|, T ∗[2]T [1]M

)
,

where |∆n| = {(x0, . . . , xn) ∈ Rn+1 |
∑
i xi = 1 and xi ≥ 0} is the geometric n-

simplex. Using the canonical isomorphism ω[T∗[1]M ◦L : T ∗[2]T [1]M → T [1]T ∗[1]M

described in (4.1), together with Lemma 2, one sees that

Xn
∼= SManN

(
T [1]|∆n|, T ∗[1]M

) ∼= VBund
(
T |∆n|, T ∗M

)
,

where VBund is the category of vector bundles.
We may view our simplicial manifold T ∗• M as a simplicial submanifold of

VBund(T |∆•|, T ∗M). Indeed,

T ∗0 M = VBund(T |∆0|, T ∗M) = M.
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Meanwhile, we can realize elements of T ∗nM (n > 0) inductively as harmonic maps1

in VBund(T |∆n|, T ∗M) which satisfy the following boundary conditions

• they restrict to elements of T ∗n−1M ⊂ VBund(T |∆n−1|, T ∗M) along the
boundary T∂|∆n| ⊂ T |∆n|, and

• they map horizontal vectors at points in
(
T∂|∆n|

)⊥ ⊂ T |∆n| to horizontal
vectors (horizontal with respect to the Levi-Cevita connections).

In the construction of T ∗• M , we only considered ‘harmonic’ simplicies in X•
which are suitably close to being degenerate. However, given any element of
VBund

(
T |∆n|, T ∗M

)
, one could first deform it to a homotopic ‘energy minimizing’

map, and then look at nearby ‘harmonic’ simplices. Patching these neighbourhoods
together, one might hope to construct a global integration of T ∗[2]T [1]M .

3.2. The 2-form. Next we construct a multiplicative symplectic form on T ∗2 M
which integrates the symplectic structure on T ∗[2]T [1]M .

The map m : U2 →M3 lifts to a local diffeomorphism m̃ : T ∗2 M → T ∗M3,

m̃ :
(
(x0, x1, x2); (w01, w02, w12)

)
7→
(
m(x0, x1, x2); (w01, w12, w20)

)
.

The symplectic form ωT on T ∗2 M is defined to be the pullback of the symplectic
form on T ∗M3.

To check that ωT is multiplicative, i.e. that Dω = 0, it suffices to show that
ωT = Dα for some α ∈ Ω2(T ∗1 M). Let q̃1/2 : T ∗1 M → T ∗M denote the map
defined by (x, y;w) 7→ (q1/2(x, y), w). We can use α = q̃∗1/2ωT∗M , where ωT∗M is

the symplectic form on T ∗M .

3.3. Proof that ([T ∗• M ], ωT ) integrates T ∗[2]T [1]M .

Theorem 1. The strictly-2-symplectic local 2-groupoid ([T ∗• M ], ωT ) integrates the
standard Courant algebroid (T ∗[2]T [1]M,Q,ω).

Proof. First we calculate 1-Jet([T ∗• M ]). Since (3.1) defines a simplicial map qT :
T ∗• M → E•M , it induces a map

qT : SMan∆op

(X × E•R0|1, T ∗• M)→ SMan∆op

(X × E•R0|1, E•M),

which is natural in X, and therefore a map

q̃T : 1-Jet([T ∗• M ])→ 1-Jet([E•M ]) = T [1]M,

where the identity 1-Jet([E•M ]) = T [1]M was described in Example 5.
For v ∈ T [1]xM , the corresponding map evv : E1R0|1 → E1M is given by

evv : (θ0, θ1)→ (x+ θ0v, x+ θ1v).

We would like to look at all possible maps E•R0|1 → T ∗• M lying over the map evv.
Now a map Fv : E1R0|1 → T ∗1 M such that q̃T (Fv) = evv must be of the form

(3.2) Fv : (θ0, θ1)→
(
(x+ θ0v, x+ θ1v); (w0,1 = aθ0 + bθ1 + cθ0θ1)

)
,

for a, b ∈Wx+θ0v,x+θ1v[1] ∼= T ∗[1]xM and c ∈Wx+θ0v,x+θ1v[2] ∼= T ∗[2]xM .

1Note that since the fibres of vector bundles are totally geodesic and linear maps are totally
geodesic, a vector bundle morphism f : T |∆n| → T ∗M is harmonic if and only if its restriction

f ◦ σ : |∆n| → T ∗M to any flat section σ : |∆n| → T |∆n| is harmonic.
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Figure 2. The Maps E•R0|1 → T ∗• M parametrized by T ∗[2]T [1]M .

If we would like to extend Fv : E1R0|1 → T ∗1 M to a map of simplicial (super)-
manifolds, the extension must be equivariant with respect to the action of the
category ∆op. In particular, we must have

(3.3) Fv ◦ s0 = s0 ◦ evv ⇒ a = −b.
However (3.3) is the only obstruction to extending Fv. A routine check shows that

(θ0, . . . , θn)→
(
(x+ θ0v, . . . , x+ θnv); (wij = b(θj − θi) + cθiθj)

)
is the unique extension of (3.2) to a map E•R0|1 → T ∗• M .

Consequently simplicial maps E•R0|1 → T ∗• M are parametrized by the super-
manifold T ∗[2]T [1]M . In the coordinates described in § 2.4, the maps are

ev(xα,ξα,pα,ηα) : (θ0, . . . , θn)→
(
(xα + θ0ξ

α, . . . , xα + θnξ
α);

(wij = ηα(θj − θi) + pαθiθj)
)
,

see Figure 2. It follows that 1-Jet([T ∗• M ]) = T ∗[2]T [1]M as a super-manifold.
To show that 1-Jet([T ∗• M ]) is the NQ-manifold T ∗[2]T [1]M , we must show that

the Q structure on 1-Jet([T ∗• M ]) is given by (2.12). The natural action of R0|1 on
E•R0|1 is

θ · (θ0, . . . , θn) = (θ0 + θ, . . . , θn + θ).
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So we see that

ev(xα,ξα,pα,ηα) : θ · (θ0, . . . , θn)→
(
(xα + θξα + θ0ξ

α, . . . , xα + θξα + θnξ
α);

(wij = (ηα + θpα)(θj − θi) + pαθiθj)
)
,

which descends to the action

(3.4) θ · (xα, ξα, pα, ηα) = (xα + θξα, ξα, pα, ηα + θpα)

on 1-Jet([T ∗• M ]) = T ∗[2]T [1]M . Since (3.4) is just the flow along the vector field
(2.12), it follows that 1-Jet([T ∗• M ]) = T ∗[2]T [1]M as an NQ-manifold.

What remains is to check that ωT ∈ Ω2(T ∗2 M) integrates the canonical symplec-
tic form on the cotangent bundle T ∗[2]T [1]M . For this purpose we need to find
the pullback of ωT by the evaluation map ev2 : T ∗[2]T [1]M ×E2R0|1 → T ∗2 M . We
have

q1/2(xα + θiξ
α, xα + θjξ

α) = xα +
θi + θj

2
ξα.

As a result,

ev∗2 ωT =
∑

(i,j)=(0,1),(1,2),(2,0)

d
(
xα +

θi + θj
2

ξα
)
d
(
ηα(θj − θi) + pαθiθj

)
.

The (2, 0)-bihomogeneous part of ev∗2 ωT (the part which is a 2-form on T ∗[2]T [1]M
parametrized by E2R0|1) is equal to

(ev∗2 ωT )(2,0) = (dpα dx
α + dηα dξ

α)(θ0θ1 + θ1θ2 + θ2θ0).

Comparison with (2.5) shows that 1-Jet(ω̂T ) = dpαdx
α + dηαdξ

α. Since the sym-
plectic form on T ∗[2]T [1]M is given by (2.11), this concludes the proof. �

Remark 8. In [24], Rajan Mehta and Xiang Tang construct a (global) Lie 2-groupoid
by applying the bar construction to the bi-simplicial manifold integrating the Lie
bialgebroid (T ∗M,TM). As explained in Remark 6, [T ∗• M ] is isomorphic to the
local version of the Lie 2-groupoid they build.

Furthermore, they construct a closed (degenerate) two-form ω′T on the 2-simplices
of T ∗2 M . A calculation similar to the proof above shows that 1-Jet(ω′T ) = ωT∗[2]T [1]M ,
therefore, their construction differentiates to the standard Courant algebroid.

The requirement in Definition 8 that the 2-form be non-degenerate “on the nose”,
is (at least at first glance) less complicated than the corresponding non-degeneracy
requirements in [24, § 6.2]. However, it would be interesting to know if Mehta
and Tang’s requirements on their 2-form are equivalent to the 1-Jet of their 2-form
being non-degenerate “on the nose”. Additionally, our 2-form is only defined on a
local Lie 2-groupoid, while theirs is defined on a genuine Lie 2-groupoid.

Notice that, unlike the construction in [24], T ∗• M : ∆op → Man extends natu-
rally to a functor FSetsop → Man (where FSets is the category of finite sets).

4. Integration of Exact Courant Algebroids

In this section, we show that as NQ-manifolds, any exact Courant algebroid
over M is isomorphic to the standard Courant algebroid over M (see also [34]).
Therefore once we modify the symplectic structure, the construction in § 3 also
integrates exact Courant algebroids.
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Lemma 2. Let F : SManNQ → SManN be the forgetful functor. Then T [1] :
SManN → SManNQ is a right adjoint for F . In particular, for X ∈ SManNQ and
Z ∈ SManN ,

SManNQ(X,T [1]Z) ∼= SManN (X,Z).

Proof. Since T [1]Z represents the pre-sheaf SMan(· × R0|1, Z), we have

SManNQ(X,T [1]Z) = SManN (X ×R0|1 R0|1, Z),

but the action of R0|1 on X defines an isomorphism X ×R0|1 R0|1 ∼= X.
It is clear that this bijection SManNQ(X,T [1]Z) ∼= SManN (X,Z) is natural in

both X and Z, which concludes the proof.
Let us describe the unit and co-unit of the adjunction explicitly. Note that the

homological vector field QX on X defines a section QX : X → T [1]X. Furthermore,
QX : X → T [1]X is a NQ-morphism with respect to the de Rham vector field on
T [1]X. The unit of the adjunction is the natural transformation

1→ T [1] ◦ F, X → (QX : X → T [1]X).

Meanwhile, if qZ : T [1]Z → Z is the canonical projection, then the co-unit is the
natural transformation

F ◦ T [1]→ 1, Z → (qZ : T [1]Z → Z).

In particular, if f : X → Z is any N -morphism,

T [1]f ◦QX : X → T [1]Z

is the corresponding NQ-morphism. In the other direction, if f̃ : X → T [1]Z is an

NQ-morphism, the corresponding N -morphism is just qZ ◦ f̃ . �

Example 9 (The Anchor Map). Suppose X is any NQ-manifold over the base
B(X) := (0, 0) · X (here (0, 0) ∈ End(R0|1), see Definition 5). Multiplication by
(0, 0) defines the canonical projection qX : X → B(X). It follows from Lemma 2
that there is a unique NQ-morphism

aX : X → T [1]B(X)

over qX : X → B(X), called the anchor map for X.
Furthermore, Lemma 2 implies that aX is a natural transformation from the

identity functor on SManNQ to T [1] ◦ B : SManNQ → SManNQ. In fact T [1] :
Man → SManNQ is a right adjoint for B : SManNQ → Man, with unit aX and
co-unit the identity.

Let

(4.1a) L : T ∗[2]T [1]M → T ∗[2]T ∗[1]M

denote the Legendre transform and

(4.1b) ω[T∗[1]M : T ∗[2]T ∗[1]M → T [1]T ∗[1]M

be the diffeomorphism defined by the canonical symplectic structure ωT∗[1]M on

T ∗[1]M [22,27]. Note that the composition ω[T∗[1]M ◦L is an NQ-morphism with re-

spect to the de Rham vector field on T [1]T ∗[1]M [27]. Finally, let s : T [1]T ∗[1]M →
T ∗[1]M denote the canonical projection.

Suppose that (T ∗[2]T [1]M,Qκ, ω) is an exact Courant algebroid with back-
ground 3-form κ ∈ Ω3(M). Then by Lemma 2, there is a NQ-morphism ψκ :
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(T ∗[2]T [1]M,Qκ)→ (T ∗[2]T [1]M,Q) corresponding to theN -morphism s◦ω[T∗[1]M◦
L.

Proposition 2. The NQ-morphism ψκ : (T ∗[2]T [1]M,Qκ) → (T ∗[2]T [1]M,Q) is
given by translation along the fibres of q : T ∗[2]T [1]M → T [1]M by the degree-2
1-form

1

2
ιQdRιQdRq

∗
Mκ,

where qM : T [1]M → M is the projection, and QdR is the de Rham vector field on
T [1]M . In particular, ψκ is a diffeomorphism.

Proof. A routine calculation shows that, in coordinates, both maps are equal to

ψκ : (xα, ξα, pα, ηα)→ (xα, ξα, pα + 3κ[αbc]ξ
bξc, ηα),

where κ = κ[abc]dx
adxbdxc. �

It follows that, under the diffeomorphism ψκ, the canonical symplectic form ω
on T ∗[2]T [1]M transforms as

(ψ−1
κ )∗ω = ω − 1

2
q∗dιQdRιQdRq

∗
Mκ = ω − q∗LQdRιQdRq∗Mκ.

Therefore, we need to modify the symplectic form on T ∗2 M by a multiplicative
term which is mapped to −LQdRιQdRq∗Mκ by 1-Jet.

4.1. Modification of the symplectic form on T ∗2 M . To lift this modification
of the symplectic form to T ∗2 M , we make use of the connection on M to integrate
κ along geodesics in M .

Recall from § 3.1 that T ∗• M is a simplicial vector bundle over the simplicial
manifold U• ⊆ E•M . We define a 2-form µ ∈ Ω2(U1)

(4.2) µ :=

 
[0,1]

Γ∗κ

by integration over the fibres of

(4.3) Γ : [0, 1]× U1 →M, Γ(t, x, y) = γx,y(t).

Let κ ∈ Ω2(U2) be defined by

κ = Dµ :=

2∑
i=0

(−1)id∗iµ.

We see immediately that Dκ = 0, so it is multiplicative. Furthermore,

d

 
[0,1]

Γ∗κ−
 

[0,1]

dΓ∗κ = d∗1κ− d∗0κ.

Since κ is closed, this implies that dµ = d∗1κ− d∗0κ. Consequently κ is closed.

Lemma 3. 1-Jet(κ̂) = LQdRιQdRq∗Mκ

The two form ωT − q∗T κ is non-degenerate since we are modifying the standard
symplectic form on of T ∗M3 by a closed 2-form on (an open subset of) M3. Thus,
we immediately get the following theorem.

Theorem 2. The strictly-2-symplectic local 2-groupoid ([T ∗• M ], ωT − q∗T κ) in-
tegrates the exact Courant algebroid (T ∗[2]T [1]M,Qκ, ω) with background 3-form
κ ∈ Ω3(M).
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Proof of Lemma 3. We do the calculation in coordinates. Recall from Example 5
that T [1]M parametrizes the simplicial maps E•R0|1 → E•M . A point (xα, ξα) ∈
T [1]M parametrizes the map

ev(xα,ξα) : (θ0, . . . , θn)→ (xα + θ0ξ
α, . . . , xα + θnξ

α).

Composition with Γ : [0, 1]× E1M →M is given by

Γ :
(
t, ev(xα,ξα)(θ0, θ1)

)
→ (xα + (t(θ1 − θ0) + θ0)ξα).

Therefore, with κ = κ[abc]dx
adxbdxc,

Γ∗κ[abc]dx
adxbdxc

= κ[abc](x
α + (· · · )ξα)d(xa + (· · · )ξa)d(xb + (· · · )ξb)d(xc + (· · · )ξc)

=
(
κ[abc](x

α) +
∂κ[abc]

∂xd
(xα)(t(θ1 − θ0) + θ0)ξd + · · · )(

3(θ1 − θ0)ξadtdxbdxc + 6θ0θ1ξ
adtdξbdxc + · · ·

)
=

(
κ[abc](3(θ1 − θ0)ξadxbdxc − 6θ0θ1ξ

adξbdxc)− 3
∂κ[abc]

∂xd
θ0θ1ξ

dξadxbdxc
)
dt+ · · ·

where we have omitted the terms that do not contain dt. So at the point ev(xα,ξα)(θ0,
θ1), µ is given by

µ(ev(xα,ξα)(θ0, θ1))

=κ[abc](3(θ1 − θ0)ξadxbdxc − 6θ0θ1ξ
adξbdxc)− 3

∂κ[abc]

∂xd
θ0θ1ξ

dξadxbdxc

κ(ev(xα,ξα)(θ0, θ1, θ2))

=− 3
(
2κ[abc]ξ

adξbdxc +
∂κ[abc]

∂xd
ξdξadxbdxc

)
(θ0θ1 + θ1θ2 + θ2θ0).

Comparison with (2.5) shows that

1-Jet(κ̂) = −6κ[abc]ξ
adξbdxc − 3

∂κ[abc]

∂xd
ξdξadxbdxc.

Using dκ = 0, we calculate,

1-Jet(κ̂) = 6κ[abc]dξ
aξbdxc + 3

∂κ[abc]

∂xd
dxdξaξbdxc

= 3d(κ[abc]ξ
aξbdxc)

=
1

2
dιQdRιQdRq

∗
Mκ

= LQdRιQdRq∗Mκ

�
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[30] P. Ševera, “Letters to A. Weinstein.” Available from: http://sophia.dtp.fmph.uniba.sk/

~severa/letters/.
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