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Abstract. In a flow of two immiscible incompressible viscous fluids, jump
discontinuities of flow quantities appear at the two-fluid interface. The im-
mersed interface method can accurately and efficiently simulate the flow with-
out smearing the sharp interface by incorporating necessary jump conditions
into a numerical scheme. In this paper, we systematically derive the principal
jump conditions for the velocity, the pressure, and their normal derivatives.

1. Introduction. The flow of two immiscible fluids is used in many technologi-
cal applications, ranging from manufacturing to lubricated transport. The direct
numerical simulations of two-fluid problems have a potentially huge domain for in-
creased understanding [3, 4]. Because of possible interface breakup/coalescence in
a two-fluid flow, it is generally difficult and inefficient to simulate the dynamics of
each fluid separately in its own domain using an interface-fitted grid method and
couple the dynamics of the two fluids through interfacial conditions.

Following Peskin’s mathematical formulation in the immersed boundary
method [9, 10], the two-fluid dynamics can be formulated in a single set of con-
servation equations for the whole flow field [11]. In particular, interfacial effects
such as surface tension are included in the equations as a force term. This force
term concentrates at the interface through the Dirac δ function, so it is called a sin-
gular force. With this unified formulation, the two-fluid dynamics can be efficiently
computed using a fixed grid, for example, a fixed Cartesian grid.

Following Peskin’s immersed boundary method, the Dirac δ function in the for-
mulation can be approximated by a narrow-supported smooth function. This ap-
proximation removes the force singularity and associated discontinuities, and thus
allows for standard numerical schemes, but it has the drawbacks of interface smear-
ing and low accuracy. The immersed interface method [6, 7, 8, 13, 14, 15] can
overcome these drawbacks by directly incorporating jump conditions (caused by
the singular force) into numerical schemes near an interface. With necessary jump
conditions known, it can achieve second-order or higher accuracy. In this paper, the
principal jump conditions for the velocity, the pressure, and their normal deriva-
tives are derived for the immersed interface method to simulate two-fluid systems
governed by the Navier-Stokes equations. In [5, 12], similar jump conditions are de-
rived for single-fluid systems. In [2], principal pressure jump conditions are derived
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for Stokes equations with discontinuous viscosity. Through the use of the vorticity,
our derivation in this paper is very concise and simple.

2. Mathematical formulation. Considering a two-fluid system in which each
fluid has constant density and viscosity, the single set of conservation equations
governing the whole system read

ρ

(

∂ui

∂t
+

∂uiuj

∂xj

)

=
∂σij

∂xj

+ Fi + ρGi, (1)

∂ui

∂xi

= 0, (2)

where ρ is the density of the two-fluid system, ui is the velocity, t is time, xi(i =
1, 2, 3) is Cartesian coordinates, σij is the stress tensor, Fi is a singular force repre-
senting interfacial effects, and Gi is a finite smooth body force. The stress tensor
is given by

σij = −pδij + 2µeij = −pδij + µ

(

∂ui

∂xj

+
∂uj

∂xi

)

, (3)

where p is the pressure, δij is the Kronecker symbol, eij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

is the

strain tensor, and µ is the dynamic viscosity of the two-fluid system. In this paper,
both tensor notation and vector notion may be used for the same quantity. For
example, both xi and ~x are used to denote Cartesian coordinates.

The system density ρ and viscosity µ can be written as

ρ = ρ1H(~x, t) + ρ2(1 − H(~x, t)), (4)

µ = µ1H(~x, t) + µ2(1 − H(~x, t)), (5)

where ρ1 and µ1 are the constant density and viscosity of fluid 1, ρ2 and µ2 are the
constant density and viscosity of fluid 2, and H(~x, t) is a 3D step function (Heaviside
function). The step function satisfies

H(~x, t) =

{

1, ~x ∈ V1,
0, ~x /∈ V1,

(6)

where V1 is the volume occupied by fluid 1 at time t, as shown in Fig. 1 (a).
As shown in Fig. 1, the two-fluid interface is denoted as S, and its Cartesian

coordinates are denoted as ~X. The interface moves with the local fluid velocity

d ~X

dt
= ~U, (7)

where ~U = ~u( ~X, t) is the fluid velocity at ~x = ~X and time t.
In general, the singular force Fi can be expressed as

Fi =

∫

S

fiδ(~x − ~X)d ~X, (8)

where fi = fi( ~X, t) is the force density. The force density in the two-fluid system
takes the following form [1]

fi = γ

(

1

R1

+
1

R2

)

ni, (9)

where γ is the surface tension, ni denotes the normal to the interface, which points
to fluid 2 as shown in Fig. 1 (a), and R1 and R2 are the radii of curvature of the
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Figure 1. (a) Schematics of the two-fluid system showing volume
V1 of fluid 1, the two-fluid interface S, and the normal ~n point-
ing toward fluid 2; (b) The two-fluid interface S in a Cartesian
coordinate system: xi(i = 1, 2, 3) is Cartesian coordinates, α1 and

α2 are two parameters parameterizing the interface locally, ~X is

the Cartesian coordinates of the interface, ~τ , ~b and ~n are the two
tangential vectors and the normal vector, respectively.

interface in any two orthogonal planes containing ~n, being reckoned as positive when
the corresponding center of curvature lies on the side of the interface to which ~n
points.

3. Preparations for the derivation. The two-fluid interface is locally
parametrized near an arbitrary interface point by two parameters α1 and α2 at

time t, as shown in Fig. 1 (b). Near the point, the interface coordinates ~X and
any jump condition can therefore be written as functions of α1, α2 and t. The
parametrization is chosen such that at this particular point the two unit tangents

~τ and ~b and the unit normal ~n to the interface are given by

~τ =
∂ ~X

∂α1

, ~b =
∂ ~X

∂α2

, ~n = ~τ ×~b, (10)

where ~n points to fluid 2, as shown in Fig. 1 (a). In the following sections, jump con-
ditions are derived for this arbitrary interface point. Although global Lagrangian
parametrization was used in [13, 14, 15] for tracking solid boundaries, it is not
suitable for tracking the two-fluid interface which may undergo topological change.
The special local parametrization introduced here only needs local geometric infor-
mation of the interface. It is convenient for both the theoretical derivation and the
numerical implementation of jump conditions. The derived jump conditions can be
directly used with any interface tracking/capturing techniques.

Hereafter the notation [·] is used to denote a jump across the interface, and it is
defined as

[·] = (·)fluid2 − (·)fluid1. (11)

Regarding the jump operator [·], there are two facts which will be used later without
being mentioned. First, inside a jump, a piecewise constant coefficient c (with
a discontinuity across the interface) can be freely moved inside or outside of a
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differential operator:
[

c
∂(·)

∂xi

]

=

[

∂c(·)

∂xi

]

. (12)

Second, the jump operator commutes with differentiation along the interface:

∂[·]

∂αl

=

[

∂(·)

∂αl

]

, l = 1, 2. (13)

Below are the formulas that will be used later for the derivation. The first one is

~ω × ~n =
∂~u

∂n
− (∇~u) · ~n, (14)

where ~ω = ∇× ~u is the vorticity. This formula comes from

ǫijkωjnk = ǫijkǫjpq

∂uq

∂xp

nk = (δkpδiq − δkqδip)
∂uq

∂xp

nk =
∂ui

∂xk

nk −
∂uk

∂xi

nk,

where ǫijk denotes the permutation symbol and δij the Kronecker symbol.
The second one is

[(∇~u) · ~n] = 0. (15)

Proof. The continuity equation (2) gives

lim
δn→0

∫

δV

∂

∂xk

(

∂uk

∂xi

)

dV = 0 =⇒

[

∂uk

∂xi

]

nkδS = 0 =⇒

[

∂uk

∂xi

]

nk = 0,

where the control volume δV is formed by sweeping an infinitesimal area δS on the
interface S in the direction of ~n and −~n by δn.

The third one is the following relation at the interface

~n · (∇× ~ω) =
∂(~τ · (~ω × ~n))

∂α1

+
∂(~b · (~ω × ~n))

∂α2

. (16)

Proof. The left hand side of equation (16) is

~n · (∇× ~ω) = (ǫijkτjbk)

(

ǫimn

∂ωn

∂xm

)

=

(δjmδkn − δjnδkm)τjbk

∂ωn

∂xm

= τjbk

∂ωk

∂xj

− τjbk

∂ωj

∂xk

=

∂~ω

∂τ
·~b −

∂~ω

∂b
· ~τ .

Using the equality

~ω × ~n = ~ω × (~τ ×~b) = (~ω ·~b)~τ − (~ω · ~τ )~b,

the right hand side of equation (16) is

∂(~τ · (~ω × ~n))

∂α1

+
∂(~b · (~ω × ~n))

∂α2

=
∂(~ω ·~b)

∂α1

−
∂(~ω · ~τ )

∂α2

=

∂~ω

∂α1

·~b −
∂~ω

∂α2

· ~τ + ~ω ·

(

∂~b

∂α1

−
∂~τ

∂α2

)

.

The particular local parametrization introduced above implies

∂~ω

∂α1

=
∂~ω

∂τ
,

∂~ω

∂α2

=
∂~ω

∂b
,

∂~b

∂α1

−
∂~τ

∂α2

= 0.
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So the right hand side of equation (16) also equals to

∂~ω

∂τ
·~b −

∂~ω

∂b
· ~τ ,

and equation (16) is proved.

4. Principal jump conditions. In this section, jump conditions for the velocity,
the pressure, and their normal derivatives are derived. These jump conditions
are called the principal jump conditions since they are the starting point for the
derivation of jump conditions of Cartesian derivatives.

Continuity equation (2) implies the continuity of the normal component of the
velocity across the interface, and the continuity of the tangential component is a
physical requirement of the viscous flow, so the velocity is continuous.

Proposition 1. The velocity is continuous at the two-fluid interface,

[ui] = 0. (17)

Equation (7) in Section 2, which indicates that the interface moves with the local
fluid velocity, has already assumed the continuity of the velocity. Define

u∗

i = νui, (18)

where ν = µ
ρ

denotes the kinematic viscosity. Proposition 1 gives

[u∗

i ] = [ν]Ui, (19)

where Ui is the interface velocity (as defined before for equation (7)). Using Propo-
sition 1, it can be proved that the acceleration is also continuous [12].

Corollary 1.
[

dui

dt

]

=

[

∂ui

∂t
+ uj

∂ui

∂xj

]

= 0. (20)

Equations (1), (3) and (20) (with the application of the continuity equation (2))
therefore imply

[

1

ρ

∂p

∂xi

]

=

[

ν
∂2ui

∂xj∂xj

]

. (21)

Theorem 4.1. The jump condition of the pressure satisfy

[p] = fn − 2[µ]

(

∂ ~U

∂τ
· ~τ +

∂ ~U

∂b
·~b

)

, (22)

where fn = ~f · ~n is the normal component of the force density.

Proof. As δn → 0, the momentum balance based on the momentum equation (1) in
the control volume δV (δn and δV are defined in the proof of equation (14)) gives

[σij ]nj + fi = 0,

which can be written out as

− [p]ni +

[

µ

(

∂ui

∂xj

+
∂uj

∂xi

)]

nj + fi = 0. (23)

Multiplying ni above and then using the equality

τiτj + bibj + ninj = δij ,

and applying the continuity equation (2) and equation (17), the result follows.
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Theorem 4.2. The normal derivative of the velocity satisfies the jump condition
[

µ
∂ui

∂n

]

= −fττi − fbbi (24)

−[µ]

((

∂ ~U

∂τ
· ~n

)

τi +

(

∂ ~U

∂b
· ~n

)

bi +

(

∂ ~U

∂τ
· ~τ +

∂ ~U

∂b
·~b

)

ni

)

,

where fτ = ~f ·~τ and fb = ~f ·~b (For the two-fluid system with ~f given by equation (9),
fτ and fb equal to zero).

Proof. Equations (22) and (23) indicate
[

µ

(

∂ui

∂xj

+
∂uj

∂xi

)]

nj = −fi + fnni − 2[µ]

(

∂ ~U

∂τ
· ~τ +

∂ ~U

∂b
·~b

)

ni.

Multiplying τi, bi, and ni above gives
[

µ

(

∂ui

∂n
τi +

∂uj

∂τ
nj

)]

= −fτ =⇒ ~τ ·

[

µ
∂~u

∂n

]

= −fτ − [µ]

(

∂ ~U

∂τ
· ~n

)

,

[

µ

(

∂ui

∂n
bi +

∂uj

∂b
nj

)]

= −fb =⇒ ~b ·

[

µ
∂~u

∂n

]

= −fb − [µ]

(

∂ ~U

∂b
· ~n

)

,

[

µ

(

∂ui

∂n
ni +

∂uj

∂n
nj

)]

= −2[µ]

(

∂ ~U

∂τ
· ~τ +

∂ ~U

∂b
·~b

)

=⇒

~n ·

[

µ
∂~u

∂n

]

= −[µ]

(

∂ ~U

∂τ
· ~τ +

∂ ~U

∂b
·~b

)

,

which forms a linear system for
[

µ∂ui

∂n

]

as

C1

















µ
∂u1

∂n

µ
∂u2

∂n

µ
∂u3

∂n

















=























−fτ − [µ]

(

∂ ~U

∂τ
· ~n

)

−fb − [µ]

(

∂ ~U

∂b
· ~n

)

−[µ]
(

∂~U
∂τ

· ~τ + ∂~U
∂b

·~b
)























, (25)

where

[

...

]

denotes a jump for a column vector, and the non-singular coefficient

matrix C1 and its inverse C−1
1 are

C1 =





τ1 τ2 τ3

b1 b2 b3

n1 n2 n3



 , C−1
1 =





τ1 b1 n1

τ2 b2 n2

τ3 b3 n3



 . (26)

Solving this linear system gives equation (24).

The jump condition
[

∂u∗

i

∂n

]

(where u∗
i = νui) is related with the jump condition

[

µ∂ui

∂n

]

by
[

∂u∗
i

∂n

]

=
1

ρ2

[

µ
∂ui

∂n

]

−
[ρ]

ρ1ρ2

µ1

∂ui

∂n

∣

∣

∣

∣

fluid1

. (27)
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or
[

∂u∗
i

∂n

]

=
1

ρ1

[

µ
∂ui

∂n

]

−
[ρ]

ρ1ρ2

µ2

∂ui

∂n

∣

∣

∣

∣

fluid2

. (28)

Proof. The first equality comes from
[

∂u∗
i

∂n

]

=

[

ν
∂ui

∂n

]

=
µ2

ρ2

∂ui

∂n

∣

∣

∣

∣

fluid2

−
µ1

ρ1

∂ui

∂n

∣

∣

∣

∣

fluid1

=

1

ρ2

([

µ
∂ui

∂n

]

+ µ1

∂ui

∂n

∣

∣

∣

∣

fluid1

)

−
µ1

ρ1

∂ui

∂n

∣

∣

∣

∣

fluid1

.

The second one can be shown similarly.

Theorem 4.3. The normal derivative of the pressure satisfies the jump condition
[

1

ρ

∂p

∂n

]

=
∂f̃1

∂α1

+
∂f̃2

∂α2

, (29)

where f̃1 and f̃2 are

f̃1 = ~τ ·

[

∂~u∗

∂n

]

− [ν]

(

∂ ~U

∂τ
· ~n

)

, f̃2 = ~b ·

[

∂~u∗

∂n

]

− [ν]

(

∂ ~U

∂b
· ~n

)

.

Proof. With the identity ∆~u = −∇×~ω+∇(∇·~u), Equations (21) and (16) indicate
[

1

ρ

∂p

∂n

]

= −[ν~n · (∇× ~ω)] =
∂

∂α1

(~τ · [ν~ω × ~n]) +
∂

∂α2

(~b · [ν~ω × ~n]).

Equations (14) and (15) indicate

~τ · [ν~ω × ~n] = ~τ ·

[

ν
∂~u

∂n

]

− [ν]

(

∂ ~U

∂τ
· ~n

)

,

~b · [ν~ω × ~n] = ~b ·

[

ν
∂~u

∂n

]

− [ν]

(

∂ ~U

∂b
· ~n

)

.

So equation (29) follows.

Define

p∗ =
p

ρ
. (30)

There are no local expressions for the jump conditions [p∗] and
[

∂p
∂n

]

. These jump

conditions depend on the global flow field, and they can be computed numerically.
Note that jump conditions for a uniform-fluid system are recovered with [µ] = 0,

[ρ] = 0 and [ν] = 0.
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