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Abstract. In this paper, we establish the blow-up rate of the large positive
solution of the singular boundary value problem

{

−△u = λu − b(x)uf(u) in Ω,

u = +∞ on ∂Ω,

where Ω is a ball domain and b is a radially symmetric function on the domain,
f(u) ∈ C1[0,∞) satisfies f(0) = 0, f ′(u) > 0 for all u > 0, and f(u) ∼ Fup−1

for sufficiently large u with F > 0 and p > 1. Naturally, the blow-up rate of
the problem equals its blow-up rate for the very special, but important case,
when f(u) = Fup−1. Some examples are given to illustrate how the blow-up
rate depends on the asymptotic behavior of b near the boundary. b can decay
to zero as a polynomial, an exponential function, or a function which is not
monotone near the boundary.

1. Introduction and Main Results. Let Ω ⊂ R
N be a smooth bounded do-

main. We are interested in the uniqueness and asymptotic behavior of the blow-up
solutions to the elliptic equation

−△u = λu − b(x)uf(u) in Ω, (1)

where λ ∈ R is a parameter and b(x) is continuous and positive in Ω and non-
negative on ∂Ω.
A solution of (1) is called a large (or explosive) solution which is understood as a
strong solution u such that

u(x) → ∞ as d(x, ∂Ω) → 0. (2)

The problem (1) together with the boundary blow-up condition is called a singular
boundary value problem. The subject of blow-up solutions has obtained much
attention starting with the pioneering papers ([1],[2],[3], [9], [14], [17]-[26]) and
the reference therein. Singular boundary value problem (1) arises naturally from a
number of different areas and have a long history. If b > 0 in Ω̄ and f(u) = up−1 (p >
1), then (1) is known as the logistic equation. This equation is a basic population
model and it is also related to some prescribed curvature problems in Riemannian
geometry ([3], [8],[22]). In 1916 Bieberbach [2] studied the large solutions for the
particular case −△u = −b(x) exp(x), b(x) ≡ 1 and N = 2. He showed that there
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exists a unique solution of equation (1) such that u(x) − log(d(x)−2) is bounded
as x → ∂Ω. Motivated by a problem in mathematical physics, Rademacher [28]
continued the study of Bieberbach on smooth bounded domains in R

3. In 1990’s,
Bandle-Essen [1] and Lazer-Mckenna [14] extended the results of Bieberbach and
Rademacher for bounded domains in R

N satisfying a uniformal external sphere
condition. It is shown that the problem exhibits a unique solution in a smooth
domain together with an estimate of the form u = log d−2 + o(d) in [14](where
b(x) ≥ b0 > 0 as d→ 0) and in [1](where b ≡ 1).

Recently, the uniqueness and blow-up rates of large solutions for f(u) = up−1

are treated in [9]-[30] and in many other works. Under the assumption

lim
d(x,∂Ω)→0

b(x)

d(x, ∂Ω)γ
= ζ

with γ > 0 and ζ > 0, an explicit expression for the blow-up rates of (1) has been
recently proved in [9](1999) and [11](2001) as u = (α(α+1)/ζ)1/(p−1)d−α(1+o(d)),
α = (γ + 2)/(p− 1). Further improvements of this result can be found in [17], [19],
[25], [26] and the reference therein. A localization method used in [17], [26] shows
that (1) (with f(u) = up−1, p > 1) has at most one blow-up solution for the case
when γ and ζ vary along ∂Ω.

S. Cano-Casanova and J. López-Gómez [5] published their very recent uniqueness
results, which dealt with the same problem under different assumptions on b(x) and
f(u). If Ω is a ball or an annulus, b(x) is a positive and non-decreasing radially
continuous function, f ∈ C[0,∞)

⋂C2(0,∞) satisfies f(0), f ′(u) > 0, f ′′(u) > 0
and f(u) ∼ Fup−1 as u → ∞, then in [5] they proved that (1) possesses a unique
positive large solution and the exact blow-up rate of the large solution is estimated.
If the results in [5] and [20] are combined, they would only require the monotonicity
of b and the concavity of f(u) and would not require that f(u) ∼ Fup−1 as u→ ∞.
Z. Xie [29] extended the study in a more general domain with different type of
nonlinear function f(u).

The main purpose of this paper is to provide a more general version of (1) for a
class of function of f(u) and a wide range of b(x), in the spirit of [19], [25] and [26].
Consider the singular boundary value problem:

{

−△u = λu− b(x)uf(u) in Ω,

u = ∞ on ∂Ω,
(3)

where Ω = BR(x0) is the ball of radius R centered at x0. The weight function b(x)
satisfies:
(Assumption B) (1) b(x) = b(r) is a radially continuous function in the ball, where

r = ‖x− x0‖. Define B(r) =
∫ R

r
b(s)ds and b∗(r) =

∫ R

r
B(s)ds.

(2) b(r) ∈ C([0, R]; [0,∞)) satisfies b(r) > 0 for r ∈ [0, R). B(r)
b(r) ∈ C1([0, R]) ,

limr→R
B(r)
b(r) = 0, and

C0 := lim
r→R

((b∗(r))′)2

b∗(r)(b∗(r))′′
≥ 1. (4)

The nonlinear function f(u) satisfies:
(Assumption F) f(u) ∈ C1[0,∞) satisfies f(0) = 0, f ′(u) > 0 for all u > 0; and,
for some p > 1,

F = lim
u→∞

f(u)

up−1
> 0. (5)
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The main result can be stated as follows.

Theorem 1.1. Suppose that the weight function b(x) and the nonlinear function
f(u) satisfy the assumption B and F respectively. Then the problem (3) has a
unique solution u satisfying

lim
d(x)→0

u(x)

KF−β(b∗(‖x− x0‖))−β
= 1

where d(x) = dist(x, ∂Ω) and K is a constant defined by

K = [β((β + 1)C0 − 1)]
1

p−1 , β =
1

p− 1
.

The rest of the paper is organized as follows. In section 2, we give the proof of
theorem 1.1. In Section 3, we make use of theorem 1.1 and construct some examples
which give some very interesting asymptotic behavior.

2. Proof of the Main Result.

Proof of Theorem 1.1. We first consider the corresponding singular problem (3) in
one dimension











−ψ′′ − N−1
r ψ′ = λψ − b(r)ψf(ψ) in (0, R),

limr→R ψ(r) = ∞,

ψ′(0) = 0.

(6)

We claim that for each ǫ > 0, the problem (6) possesses a positive large solution ψǫ
such that

1 − ǫ ≤ lim inf
r→R

ψǫ(r)

KF−β(b∗(r))−β
≤ lim sup

r→R

ψǫ(r)

KF−β(b∗(r))−β
≤ 1 + ǫ (7)

where we have denoted

β =
1

p− 1
, b∗(r) =

∫ R

r

∫ R

s

b(t)dtds, K = [β((β + 1)C0 − 1)]
1

p−1 , (8)

and C0 is given by (4) and H is constant as in (5).
Therefore, for each x0 ∈ R

N , the function

uǫ(x) := ψǫ(r); r := ‖x− x0‖
provides us with a radially symmetric positive large solution of (3) with the as-
sumptions in theorem 1.1 and the solution satisfies

1 − ǫ ≤ lim inf
d(x)→0

uǫ(x)

KF−β(b∗(‖x− x0‖))−β
≤ lim sup

d(x)→0

uǫ(x)

KF−β(b∗(‖x− x0‖))−β
≤ 1 + ǫ.

(9)
To prove the claim, we first construct a supersolution of (6) for each ǫ > 0. Let

ψ̄ǫ(r) = A+B+

( r

R

)2

(b∗(r))−β , (10)

where A > 0 and B+ > 0 have to be determined later. Then ψ̄ǫ(r) is a supersolution
if

− ψ̄′′

ǫ (r) −
N − 1

r
ψ̄′

ǫ(r) ≥ λψ̄ǫ(r) − b(r)ψ̄ǫ(r)f(ψ̄ǫ(r)). (11)
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By the assumption (5), for the same ǫ > 0,

(1 − ǫ)Fψ̄pǫ (r) ≤ ψ̄ǫ(r)f(ψ̄ǫ(r)) ≤ (1 + ǫ)Fψ̄pǫ (r) (12)

for all r ∈ [0, R) by choosing A sufficiently large, say A ≥ A0. The inequality (11)
holds if

− ψ̄′′

ǫ (r) − N − 1

r
ψ̄′

ǫ(r) ≥ λψ̄ǫ(r) − b(r)(1 − ǫ)Fψ̄pǫ (r). (13)

Multiplying both sides of this inequality by (b∗(r))pβ

b(r) and taking into consideration

that pβ = β + 1.

−2N
B+

R2

b∗(r)

b(r)
+ [N + 3]βB+

r

R2

(b∗(r))′

b(r)
−

β(β + 1)B+

( r

R

)2 [(b∗(r))′]2

b∗(r)b(r)
+ βB+

( r

R

)2 (b∗(r))′′

b(r)

≥ λ
b∗(r)

b(r)

[

A(b∗(r))β +B+

( r

R

)2
]

− (1 − ǫ)F

[

A(b∗(r))β +B+

( r

R

)2
]p

.

Since when r → R, b
∗(r)
b(r) → 0, (b∗(r))′

b(r) → 0, [(b∗(r))′]2

b∗(r)b(r) → C0 ≥ 1 and (b∗(r))′′

b(r) → 1 by

assumption B, then the above inequality becomes into

−β(β + 1)B+C0 + βB+ ≥ −(1 − ǫ)F (B+)p

as r → R, which is

B+ ≥ [β((β + 1)C0 − 1)]
1

p−1

[(1 − ǫ)F ]
1

p−1

.

Let B+ = (1+ ǫ)(1− ǫ)−βF−β [β((β + 1)C0 − 1)]
β

= (1+ ǫ)(1− ǫ)−βF−βK. There-
fore, by making the choice B+, the inequality (13) is satisfied in a left neighborhood
of r = R, say (R − δ,R], for some δ = δ(ǫ) > 0. Finally, by choosing A sufficiently
large (larger than A0) it is clear that the inequality is satisfied in the whole interval
[0, R] since p > 1 and b∗(r) is bounded away from zero in [0, R− δ]. Then ψ̄ǫ is our
required supersolution of problem 6.

Next, we construct a subsolution with the same blow-up rate as the above su-
persolution. For doing this we shall distinguish two different cases according to the
sign of the parameter λ. First, we assume λ ≥ 0. Due to the assumption (5) on f ,
for u ≥ A0 large,

(1 − ǫ)Fup ≤ uf(u) ≤ (1 + ǫ)Fup.

For each A0 > 0 and 0 < R0 < R, we consider the auxiliary problem










−ψ′′ − N−1
r ψ′ = λψ − b(r)ψf(ψ) in (0, R0),

ψ(R0) = A0,

ψ′(0) = 0.

(14)

By the assumption on b and f , we have

min
r∈[0,R0]

b(r) > 0, f(0) = 0, and f(u) → ∞ as u→ ∞.

Then it is easy to know that

ψ
A0

:= 0, ψ̄A0
:= A0
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provides us with an ordered sub-supersolution pair of (14). Thus (14) possesses a
solution ψA0

such that ψA0
(r) ∈ [0, A0] for all r ∈ [0, R0]. For each ǫ > 0 sufficiently

small, we claim that there exists 0 < C < A0 for which the function

ψ
ǫ
(r) =

{

ψA0
(r), r ∈ [0, R0],

max{A0, C +B−

(

r
R

)2
(b∗(r))−β}, r ∈ (R0, R],

provides a subsolution, where R0 and C are to be determined later and

B− = (1 − ǫ)(1 + ǫ)−βF−β [β((β + 1)C0 − 1)]β = (1 − ǫ)(1 + ǫ)−βF−βK.

In fact, denoting gC(r) = C +B−

(

r
R

)2
(b∗(r))−β we have

g′C(r) = 2B−

r

R2
(b∗(r))−β + βB−

( r

R

)2

(b∗(r))−β−1

∫ R

r

b(s)ds

which is strictly bigger than zero in (0, R). It follows that gC(r) is increasing and

lim
r→R

gC(r) = +∞, lim
r→0

gC(r) = C < A0.

By the continuity of gC(r) and the intermediate-value theorem, there exists a unique
Z = Z(C) ∈ (0, R) such that

C +B−

( r

R

)2

(b∗(r))−β < A0 when r ∈ [0, Z(C))

C +B−

( r

R

)2

(b∗(r))−β ≥ A0 when r ∈ [Z(C), R]

Moreover, Z(C) is decreasing and

lim
C→−∞

Z(C) = R, lim
C→A0

Z(C) = 0.

Let R0 = Z(C). From the definition of ψ
ǫ
(r) and R0, ψǫ(r) ≡ ψA0

(r) in [0, Z(C)],

and then the inequality −ψ′′

ǫ
− N−1

r ψ′

ǫ
≤ λψ

ǫ
− b(r)h(ψ

ǫ
) holds in [0, Z(C)]. So

ψ
ǫ
(r) is a subsolution if the following inequality is satisfied in [Z(C), R]

− ψ′′

ǫ
(r) − N − 1

r
ψ′

ǫ
(r) ≤ λψ

ǫ
(r) − b(r)ψ

ǫ
(r)f(ψ

ǫ
(r)). (15)

By direct computation and by using the fact ψ
ǫ
(r)f(ψ

ǫ
(r)) ≤ (1 + ǫ)Fψ

ǫ
(r)p in

[Z(C), R], (15) holds if

−β(β+1)B−

( r

R

)2 [(b∗(r))′]2

b∗(r)b(r)
+βB−

( r

R

)2

≤ −(1+ǫ)H

[

C(b∗(r))β +B−

( r

R

)2
]p

for each r ∈ [Z(C), R]. At r = R, it becomes −β(β+1)B−C0+βB− ≤ −(1+ǫ)FBp
−
.

That is B− ≤ [(1 + ǫ)F ]−
1

p−1 [β((β + 1)C0 − 1)]
1

p−1 . By making the choice B− =

(1− ǫ)[(1+ ǫ)F ]−
1

p−1 [β((β+1)C0−1)]
1

p−1 and using the continuity, it is easy to see
that a constant δ = δ(ǫ) > 0 exists for which the inequality is satisfied in [R− δ,R),
then we choose C such that Z(C) = R− δ(ǫ) (i.e. R0 = R − δ(ǫ)). For this choice
of C, it readily follows that ψ

ǫ
is a sub solution to the problem.

A subsolution for λ < 0 can be constructed by a similar argument as in ([25]).
Now we have a subsolution and a supersolution with the same blow-up rate of the
problem (6). So there exists a solution Ψǫ(r) of (6) such that

1 − ǫ ≤ lim inf
r→R

ψǫ(r)

KF−β(b∗(r))−β
≤ lim sup

r→R

ψǫ(r)

KF−β(b∗(r))−β
≤ 1 + ǫ.
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Proof of uniqueness. Let u be an arbitrary solution of (3). We can show that

lim
d(x)→0

u(x)

KF−β(b∗(‖x− x0‖))−β
= 1.

Consequently, for any pair of solutions u, v of (3)

lim
d(x)→0

u(x)

v(x)
= 1.

Thus, for every ǫ > 0, we can find δ > 0(as small as we please) such that

(1 − ǫ)v(x) ≤ u(x) ≤ (1 + ǫ)v(x)

when 0 < d(x) ≤ δ. On the other hand, because f((1−ǫ)v) ≤ f(v) and f((1+ǫ)v) ≥
f(v) for any v > 0, w = (1− ǫ)v(x) and w̄ = (1+ ǫ)v(x) are sub and super solutions
respectively to

{

−△w = λw − b(x)wf(w) in BR−δ(x0),

w = u on ∂BR−δ(x0).
(16)

The unique solution to this problem is w = u. Then

(1 − ǫ)v(x) ≤ u(x) ≤ (1 + ǫ)v(x)

holds in BR−δ(x0), therefore it is true in BR(x0). Letting ǫ → 0, we arrive at
u = v.

3. Examples. In this section, we construct three examples to illustrate the rela-
tionship between blow-up rates of large solutions and decay rates of weight func-
tions. Here we only give solutions in one dimension and the corresponding solutions
in higher dimension can be easily converted. The corresponding singular boundary
value problem (3) in one dimension is











ψ′′ + N−1
r ψ′ = −λψ + b(r)ψf(ψ) in (0, R),

limr→R ψ(r) = ∞,

ψ′(0) = 0,

(17)

where N is the dimension and R is the radius of ball domain. In the following exam-
ples, b and f satisfy the assumptions B and F respectively by direct computation.

Example 3.1. Let N = 3, λ = 0, R = 1, f(ψ) = ψ + ψ2 and b(r) = µ(r)6(r − 1)2,

where µ(r) =
(

2 (r − 1)
2

+ r2
)−2 (

3 (r − 1)
2

+ r2
)−1

.

Then p = 3, F = limψ→∞ f(ψ)/ψp−1 = 1, β = 1
p−1 = 1/2, and

C0 = lim
r→1

((b∗(r))′)2

b∗(r)(b∗(r))′′
=

4

3
,K = [β((β + 1)C0 − 1)]

1

p−1 =

√
2

2
.

Because µ(r) = 1−6 (r − 1)+14 (r − 1)2−93 (r − 1)4+258 (r − 1)5+O
(

(r − 1)6
)

,

the weight function b(r) has a polynomial decay rate 6(r − 1)2 as r → 1. Then

(b∗(r))−β has a polynomial blow-up rate (1
2 (r − 1)4)−1/2 =

√
2(r − 1)−2 as r → 1.

By theorem 1.1, the blow-up rate of the unique solution ψ(r) is same as the blow-up
rate of KF−β(b∗(r))−β ∼ (r − 1)−2 as r → 1.
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On the other hand, we know that ψ(r) = 2 + r2(r− 1)−2 is the exact solution of

(17). In fact, ψ(r) is a smooth function in (0, 1), ψ′(r) = 2r
(r−1)2

− 2r2

(r−1)3
,

ψ′′(r) = 2 (r − 1)
−2 − 8

r

(r − 1)
3 + 6

r2

(r − 1)
4 ,

ψ′′ + N−1
r ψ′ = 6 (r − 1)−4, and ψf(ψ) = (µ(r))−1 (r − 1)−6. So limr→1 ψ(r) = ∞

and ψ′(0) = 0. The exact blow-up rate of the solution is (r − 1)−2 as r → 1. The
graph of the weight function b(r) and the graph of the exact solution ψ(r) are shown
in Figure 1.

2.5
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1.5

1

0.5

0
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2.4
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0.50.40.30.20.10

Figure 1. Left: the graph of b(r) = µ(r)6(r − 1)2 (Polynomial
Decay); Right: the graph of the exact solution ψ(r) = 2 + r2(r −
1)−2.

Example 3.2. Let N = 3, R = 1, f(ψ) = ψ2 and b(r) = µ(r)1
4e

−(1−r)−2

, where

µ(r) =
24a

∗

a + 12Aa + 3r2 A
2

a∗a − 2r2

(2
√
a∗ + r2)3

,

and a = e−(1−r)−2

, A =
∫ R

r a(s)ds, a∗ =
∫ R

r A(s)ds.

Then p = 3, F = limψ→∞ f(ψ)/ψp−1 = 1, β = 1
p−1 = 1/2, and

C0 = lim
r→1

((b∗(r))′)2

b∗(r)(b∗(r))′′
= 1,K = [β((β + 1)C0 − 1)]

1

p−1 =
1

2
.

Because limr→R µ(r) = 1, the weight function b(r) has an exponential decay

rate 1
4e

−(1−r)−2

as r → 1, which could be not approximated by a polynomial.

Then (b∗(r))−β has an exponential blow-up rate
(

∫ 1

r

∫ 1

t
1
4e

−(1−s)−2

dsdt
)−1/2

=

2
(

∫ 1

r

∫ 1

t
e−(1−s)−2

dsdt
)−1/2

as r → 1. By theorem 1.1, the blow-up rate of the

unique solution ψ(r) is same as the blow-up rate of

ψ(r) ∼ KF−β(b∗(r))−β ∼
(

∫ 1

r

∫ 1

t

e−(1−s)−2

dsdt

)−1/2

as r → 1.

On the other hand, the exact solution is

ψ(r) = 2 + r2
(

∫ 1

r

∫ 1

t

e−(1−s)−2

dsdt

)−1/2

,
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which has the exact blow-up rate as we found by theorem 1.1. The graph of the
weight function b(r) and the graph of the exact solution ψ(r) are shown in Figure
2.
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Figure 2. Left: the graph of b(r) = µ(r)1
4e

−(1−r)−2

(Expo-
nential Decay); Right: the graph of the exact solution ψ(r) =

2 + r2
(

∫ 1

r

∫ 1

t
e−(1−s)−2

dsdt
)−1/2

.

Example 3.3. Let N = 3, R = 1, f(ψ) = ψ2 and

b(r) = µ(r) (1 − r)
(

2 + 3 (1 − r) sin
(

(1 − r)
−1

))

where

µ(r) =
24a

∗

a + 12Aa + 3r2 A
2

a∗a − 2r2

4(2
√
a∗ + r2)3

,

and a = (1 − r)
(

2 + 3 (1 − r) sin
(

(1 − r)
−1

))

, A =
∫ R

r a(s)ds, a∗ =
∫ R

r A(s)ds.

Then p = 3, F = limψ→∞ f(ψ)/ψp−1 = 1, β = 1
p−1 = 1/2, and

C0 = lim
r→1

((b∗(r))′)2

b∗(r)(b∗(r))′′
=

3

2
,K = [β((β + 1)C0 − 1)]

1

p−1 =

√
10

4
.

Because limr→R µ(r) = 5
8 and sin

(

(1 − r)
−1

)

is not monotone, b(r) is not a

monotone decreasing function as r → 1. The decay rate of b(r) is 5
4 (1− r) as r → 1

and the blow-up rate of (b∗(r))−β is ( 5
24 (1 − r)3)−1/2 as r → 1. By theorem 1.1,

the blow-up rate of the unique solution ψ(r) is same as the blow-up rate of

ψ(r) ∼ KF−β(b∗(r))−β ∼
√

3(1 − r)−3/2 as r → 1.

On the other hand, the exact solution is

ψ(r) = 2 + r2
(

∫ 1

r

∫ 1

t

(1 − s)
(

2 + 3 (1 − s) sin
(

(1 − s)
−1

))

dsdt

)−1/2

which has the exact blow-up rate as we found by theorem 1.1. The graph of the
weight function b(r) and the graph of the exact solution ψ(r) are shown in Figure
3.



836 ZHIFU XIE

r

10.80.60.40.20

3
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2

1.5

1

0.5

0

3.2

3

2.8

2.6

2.2

2

2.4

r

0.50.40.30.20.10

Figure 3. Left: the graph of b(r) =

µ(r) (1 − r)
(

2 + 3 (1 − r) sin
(

(1 − r)
−1

))

for r ∈ [0, 1] (Not

Monotone); Right: the graph of the exact solution ψ(r).
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