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Abstract. This paper is devoted to the stability analysis for two dimensional
interfaces in solid-liquid phase transitions, represented by some types of Allen-
Cahn equations. Each Allen-Cahn equation is derived from a free energy,
associated with a two dimensional Finsler norm, under the so-called crystalline
type setting, and then the Wulff shape of the Finsler norm is supposed to
correspond to the basic structural unit of masses of pure phases (crystals).
Consequently, special piecewise smooth Jordan curves, based on Wulff shapes,
will be exemplified in the main theorems, as the geometric representations of
the stability condition.

1. Introduction. Let Ω be a two dimensional bounded domain with a Lipschitz
boundary Γ := ∂Ω. Let κ > 0 be a given (small) constant. Let f ∈ C(R2) be a
norm in R

2, and let f◦ be the dual norm of f .
In this paper, the following type of evolution equation:

(E; θ)f u′(t) + κ∂Vf (u(t)) + ∂I[−1,1](u(t)) ∋ u(t) + θ(t) in L2(Ω), t > 0;

with a forcing term θ ∈ L2
loc([0, +∞); L2(Ω)), is considered, where “ ′ ” denotes

the time-derivative of functions, ∂I[−1,1] denotes the subdifferential of the indicator
function I[−1,1] on the closed interval [−1, 1], and ∂Vf denotes the subdifferential of

the L2-restriction Vf := Varf |L2(Ω) of the following convex function Varf on L1(Ω):

z ∈ L1(Ω) 7→ Varf (z) := inf

{

lim
i→+∞

∫

Ω

f◦(∇ϕi) dx
{ϕi} ⊂ C1(Ω),
ϕi → z in L1(Ω)
as i → +∞

}

; (1)

known as “anisotropic total variation”.
Equation (E; θ)f is a type of “Allen-Cahn equation”. As is well known, Allen-

Cahn equation is a generic term of kinetic equations that are motivated to describe
the dynamics of solid-liquid phase transitions, and each of them is usually derived as
a gradient flow of an energy functional, called “free energy”. In the case of equation
(E; θ)f , the corresponding free energy is given by:

u ∈ L2(Ω) 7→ κVf (u) +

∫

Ω

{

I[−1,1](u) −
1

2
u2 − θu

}

dx; (2)
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and in the context, θ is the (relative) temperature assuming the critical temperature
to be 0, and u is the (nonconserved) order parameter which indicates the physical
situation of material taking values into the closed interval [−1, 1]. Indeed, the
indicator function I[−1,1] as in (2) is to constrain the range of the order parameter
u onto the desired closed interval [−1, 1], and due to this term, it is further seen
that the density function:

u ∈ R 7→ I[−1,1](u) −
1

2
u2 − θu;

of the integral part in (2) has a graph of double-well type, for each θ ∈ R. This
property is quite important to characterize the bi-stability of solid and liquid phases,
which are respectively indicated by values −1 and 1 of the order parameter u. In
view of this, the integral part is often called as “bulk energy”.

On the other hand, the convex function Vf as in (2) is called as “interfacial
energy”, and it is inserted to characterize the geometric patterns of the interfaces.
Here, the unit ball Wf := {ξ ∈ R | f(ξ) < 1}, generated by the norm f , is called
“Wulff shape”, and it is supposed to be closely related to the anisotropic effects,
appearing in the interface formations.

One of the simplest admissible choices for f is just the Euclidean norm:

f(ξ) :=
√

ξ2
1 + ξ2

2 , for all ξ = (ξ1, ξ2) ∈ R
2; (3)

and then the Wulff shape draws the usual unit open disk in R
2. Additionally, since

the interfacial energy Vf , in this case, forms the so-called total variation functional,
the corresponding expression (2) of the free-energy just coincides with that proposed
by Visintin [19, Chapter VI].

Under the setting by (3), the stability analysis for interfaces in steady-states
has been addressed in several papers (e.g. [16, 18]), and special smooth Jordan
curves, based on sufficiently large circles, have been exemplified as the geometric
representations of the stability condition. But, at the same time, these results imply
that the instability will be observed at nonsmooth parts of the interfaces, and then
the setting by (3) may not be made for the representation of some angulate shapes,
as in crystalline structures.

Hence, in this paper, we adopt the following mathematical formula, as one of
possible setting of the norm f :

f(ξ) := max
k∈Z

νk · ξ = max
0≤k<2m

νk · ξ, for all ξ ∈ R
2; (4)

where m ≥ 2 is a fixed integer, and νk := (cos kπ
m

, sin kπ
m

), k ∈ Z. The setting, kin-
dred to (4), has been known as “crystalline type setting”, and has been utilized by
several authors, as a possible expression of anisotropy, from various viewpoints, such
as “anisotropic mean curvature flow” (e.g. Bellettini-Caselles-Chambolle-Novaga
[5], Giga-Rybka [9], Ishiwata [11] and Novaga-Paolini [15]), and “anisotropic gradi-
ent flow” (e.g. Giga-Ohtsuka-Schätzle [8] and Moll [14]). Actually, since the Wulff
shape, under (4), forms a regular even-gon centered at the origin, we can figure out
that the Wulff shape and the 2m-unit vectors νk (0 ≤ k < 2m) correspond to the
basic structural unit of crystals and the crystal orientations, respectively. In this
light, some special cases, such as the case of m = 3, can be expected to capture the
crystalline structures in concrete phenomena, such as in ice crystals.

Now, the main focus of this paper will be on the stability analysis for the in-
terfaces in steady-states, under the crystalline type setting by (4), and the main
novelties found in this paper will be:
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i) exemplification of a class of steady-state solutions of (E; θ)f , under (4);
ii) geometric characterizations for the stability of the interfaces, represented by

the steady-state solutions as in i).
Consequently, it will be shown that special piecewise smooth Jordan curves, based
on Wulff shapes (even-gons), will be built in the stability condition, and they will
make the situation more variable than that as in the setting by (3).

Notation. For an abstract Banach space X , we denote by | · |X the norm of X .
For an abstract Hilbert space H , we denote by (·, ·)H the inner product in H , and
for any proper l.s.c. and convex function Φ on H , we denote by D(Φ), ∂Φ and
D(∂Φ) the effective domain of Φ, the subdifferential of Φ and the domain of ∂Φ,
respectively.

2. Preliminaries. Throughout this paper, Ω ⊂ R
2 is fixed as a bounded domain

with a Lipschitz boundary Γ, and the product space (0, +∞)×Ω of the space-time
coordinate system is denoted by Q. For any open subset D ⊂ Ω, the external part
Ω \ D in Ω is denoted by Dex. The class of all Borel subsets in Ω is denoted by
B(Ω). For each dimension d ∈ N, we denote by Ld the d-dimensional Lebesgue
measure, and we use this measure unless otherwise specified. Also, we denote by
Hd the Hausdorff measure in each observing dimension d ∈ N. Additionally, for
any r > 0, any x ∈ R

2 and any norm f ∈ C(R2), we denote by Wf (x; r) the open
set (x + rWf ) ∩ Ω.

In this section, we briefly check the key-properties of our Allen-Cahn equation
(E; θ)f . To this end, let us start with recalling fundamentals relative to the space
BV (Ω), that closely links to the effective domain of the interfacial energy.

For any z ∈ L1(Ω), we call z a function of bounded variation (or simply a BV-
function), iff the distributional gradient Dz of z forms a (vectorial) Radon measure
on B(Ω). Then, the total variation measure |Dz| of Dz forms a (scalar valued)
Radon measure on B(Ω), such that:

|Dz|(Ω) = sup

{ ∫

Ω

z div ϕdx
ϕ ∈ C1

c (Ω; R2) and
|ϕ| ≤ 1 on Ω

}

< +∞.

In usual, the class of all BV-functions is denoted by BV (Ω), and then the functional
space BV (Ω) forms a Banach space endowed with the norm:

|z|BV (Ω) := |z|L1(Ω) + |Dz|(Ω) for any z ∈ BV (Ω).

Also, since Ω ⊂ R
2, the space BV (Ω) is continuously embedded into L2(Ω) and

compactly embedded into L1(Ω) (cf. [1, Chapter 3], [7, Chapter 5] or [10, Chapter
1]). Additionally, for any z ∈ BV (Ω), it is well-known (cf. [1, Chapters 1 and 3])
that the variation measure Dz can be decomposed into the absolutely continuous
part Dza for L2 and the singular part Dzs for L2, in the following way:

Dz = Dza + Dzs, Dz = Dz
|Dz| |Dz|, Dza = ∇zL2 and Dzs = Dzs

|Dzs| |Dzs|;

where Dz
|Dz| , ∇z and Dzs

|Dzs| are the Radon-Nikodým densities of Dz for |Dz|, Dza for

L2 and Dzs for its total variation |Dzs|, respectively. In particular, the density ∇z
coincides with the “approximate differential” of z (a.e. in Ω), proposed and studied
in [1, Definition 3.70 and Theorem 3.83].

On the basis of the theory of BV-functions, including the above, the anisotropic
total variation Varf , given in (1), is characterized as follows (cf. [1, Section 5.5]):
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(V1) the functional z ∈ L1(Ω) 7→ Varf (z) defines a proper l.s.c. and convex func-
tion on L1(Ω), and its effective domain coincides with BV (Ω). Therefore, the
L2-restriction Vf := Varf |L2(Ω) is proper l.s.c. and convex on L2(Ω), and the

effective domain D(Vf ) coincides with BV (Ω) ∩ L2(Ω);
(V2) for any z ∈ BV (Ω), there exists a Radon measure f◦(Dz) on B(Ω) such that

(i) f◦(Dz) is absolutely continuous for |Dz|, and Varf (z) =

∫

Ω

f◦(Dz),

(ii)

∫

B

f◦(Dz) =

∫

B

f◦(∇z) dx +

∫

B

f◦( Dzs

|Dzs| ) |Dzs|, for any B ∈ B(Ω).

In addition to the above, taking account of the theory of T-monotonicity [13, Section
2], we have the following lemma.

Lemma 2.1. Let us define a proper l.s.c. and convex function Φf on L2(Ω), by
putting:

Φf (z) := Vf (z) +

∫

Ω

I[−1,1](z) dx, for any z ∈ L2(Ω).

Then, it follows that:

(i) D(Φf ) =
{

ζ ∈ BV (Ω) |ζ| ≤ 1, a.e. in Ω
}

, and for any r > 0, the level-set
{

ζ ∈ L2(Ω) Φf (ζ) ≤ r
}

is compact in L2(Ω);
(ii) (z∗1 − z∗2 , (z1 − z2)

+)L2(Ω) ≥ 0, for all [z∗k, zk] ∈ ∂Φf (k = 1, 2);

(iii) D(∂Φf ) = D(∂Vf ) ∩ D(Φf ), and ∂Φf(z) = ∂Vf (z) + ∂I[−1,1](z) in L2(Ω),
for all z ∈ D(∂Φf ).

Proof. We omit to present here the detailed proof, which follows from an easy
adaptation of the argument in [18, Lemmas 2.1-2.2 and Theorem 3.1] related to the
case of (3).

Remark 1. (Supplements for T-monotonicity) Let Φ be a proper l.s.c. and convex
function on an abstract Hilbert space H , let C be any closed and convex subset in
H , and let πC be the orthogonal projection onto C. Then, as one of consequences
of T-monotonicity, we see the equivalency of the following two inequalities:

(z∗1 − z∗2 , (z1 − z2) − πC(z1 − z2))L2(Ω) ≥ 0, for all [z∗k, zk] ∈ ∂Φ (k = 1, 2); (5)

Φ(z1 − πC(z1 − z2)) + Φ(z2 + πC(z1 − z2)) ≤ Φ(z1) + Φ(z2),
for all zk ∈ D(Φ) (k = 1, 2).

(6)

Indeed, the item (ii) of Lemma 2.1 just corresponds to (5) in the case of Φ = Φf

and C = {z ∈ H | z ≤ 0 a.e. in Ω}. Also, the inequality (5), under Φ = Φf and
C = {z ∈ H | |z| ≤ 1 a.e. in Ω}, acts a key-role of the proof of item (iii) of Lemma
2.1. In either case, the validity of (5) is guaranteed by that of the equivalent form
(6), which is relatively easy to check.

Now, let us look toward the evolution equation (E; θ)f .

Definition 2.2. (Solutions of (E; θ)f ) Let θ ∈ L2
loc([0, +∞); L2(Ω)) be a fixed

function. Then, a function u : [0, +∞) −→ L2(Ω) is called a solution of (E; θ)f , iff

u ∈ W 1,2
loc ([0, +∞); L2(Ω)) ∩ L∞([0, +∞); BV (Ω)), and

((u + θ − ut)(t), z − u(t))L2(Ω) ≤ κΦf (z) − κΦf (u(t)),
a.e. t > 0, for all z ∈ D(Φf ).

(7)

Remark 2. Let us note that the assertion (iii) of Lemma 2.1 guarantees the con-
formity of the above definition with the mathematical formulation of (E; θ)f .
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In recent years, evolution equations, kindred to (E; θ)f , have been studied by
several authors from various viewpoints (e.g. [4, 6, 12]). So, referring to some
of them, we immediately have the following proposition, concerned with the key-
properties of the Allen-Cahn equation (E; θ)f .

Proposition 1. (Key-properties of (E; θ)f ) Let us fix any θ ∈ L2
loc([0, +∞); L2(Ω)).

Then, the following two statements hold.

(I) (cf. [6, Chapter III]) For any initial value u0 ∈ D(Φf ), the Cauchy problem
for (E; θ)f admits a unique solution.

(II) (cf. [12, Theorem 9.1]) Let us fix a constant −1 < θ∗ < 1, and assume that

θ − θ∗ ∈ L2(0, +∞; L2(Ω)) and θ(t) → θ∗ in L2(Ω) as t → +∞. (8)

Then, for any solution u of (E; θ)f , the ω-limit set:

ω(u) :=

{

w ∈ L2(Ω)
there is a sequence {ti} ⊂ (0, +∞) such that
ti ր +∞ and u(ti) → w in L2(Ω) as i → +∞

}

;

is nonempty, connected and compact in L2(Ω), and any w ∈ ω(u) solves the
following inclusion:

(E∞; θ∗)f κ∂Φf (w) ∋ w + θ∗ in L2(Ω);

having the equivalent variational formula:

(w + θ∗, z − w)L2(Ω) ≤ κΦf (z) − κΦf (w) for all z ∈ D(Φf ). (9)

Remark 3. In this paper, the phrases “steady-state problem” and “steady-state
solutions” respectively mean the inclusion (E∞; θ∗)f (or the equivalent formula (9))
and its solutions, under the convergence condition (8).

Finally, we briefly mention two key-lemmas in this study. The first key-lemma is
concerned with the representation of the solutions of (E; θ)f , and it plays a useful
role in the structural analysis for solutions.

Lemma 2.3. (Representation of solutions) For any θ ∈ L2
loc([0, +∞); L2(Ω)), a

function u ∈ C([0, +∞); L2(Ω)) is a solution of (E; θ)f iff there exists a vectorial
function ν

CH
∈ L∞(Q; R2), called “Cahn-Hoffmann vector field”, such that:

(a) div ν
CH

∈ L2
loc([0, +∞); L2(Ω)) and f(ν

CH
) ≤ 1 a.e. in Q;

(b) −κ div ν
CH

=







≤ u + θ − ut, if u = 1,
= u + θ − ut, if −1 < u < 1,
≥ u + θ − ut, if u = −1,

a.e. in Q;

(c) −

∫

Ω

div ν
CH

(t)u(t) dx = Vf (u(t)) and −

∫

Ω

div ν
CH

(t)ϕdx =

∫

Ω

ν
CH

(t)·∇ϕdx

for all ϕ ∈ W 1,1(Ω) ∩ L2(Ω) and a.e. t > 0.

Proof. This lemma can be proved just as in [18, Proposition 4.2]. But then, the
application part of the theory of [2, Sections 4-5], based on the approximation by p-
Laplacians, must be replaced by that of [14, Section 4], based on the approximation
by Yosida-regularizations.

Remark 4. Let us note that the restriction to time-independent situations enables
us to apply Lemma 2.3 to the structural analysis for steady-state solutions.

The second key-lemma is the so-called comparison principle of solutions, that is
often utilized in the stability analysis for steady-state solutions.
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Lemma 2.4. (Comparison principle) Let us fix two functions θk ∈ L2
loc([0, +∞);

L2(Ω)) (k = 1, 2) satisfying θ1 ≤ θ2 a.e. in Q, and let us take two solutions uk of
(E; θk)f (k = 1, 2) satisfying u1(0) ≤ u2(0) a.e. in Ω. Then, u1(t) ≤ u2(t) a.e. in
Ω, for any t ≥ 0.

Proof. This lemma is proved standardly, with the help from (ii) of Lemma 2.1.

3. Statement of the main results. In this section, two theorems are stated as
the main results of this paper. In either theorem, the geometric shapes of the
interfaces will be characterized by means of a class of open subsets in Ω, prescribed
as follows.

Definition 3.1. For any fixed constant −1 < θ∗ < 1, we define a class D∗(θ∗) ⊂
B(Ω) of open subsets in Ω, by putting:

D∗(θ∗) := {∅, Ω} ∪ D0(θ∗);

with the use of a class D0(θ∗) of all open subsets in Ω, fulfilling the following five
conditions (see also Figure 1 to get general ideas):

(D1) ∂D ∩ Ω consists of at most a finite number of Jordan curves, included in Ω;
(D2) there exists nD ∈ N, such that ∂D ∩ Ω coincides with the union

⋃nD

k=1 Γk of
C2-curves Γk (k = 1, · · · , nD). Hereafter, for any index 1 ≤ k ≤ nD, the
C2-curve Γk is supposed to be expressed as a graph of a vectorial function
γk ∈ C2(Jk; R2), defined on a compact interval Jk of the arc-length parameter
on Γk, and furthermore, the images Γ◦

k := γk(J◦
k ) of interiors J◦

k of Jk (k =
1, · · · , nD) are supposed to be pairwise disjoint;

(D3) for any index 1 ≤ k ≤ nD, there exists ℓk ∈ Z realizing one of the following
two situations:

(d1) γ⊥
k (s) :=

(

0 −1
1 0

)

γ′
k(s) = νℓk

, for all s ∈ Jk,

(d2) f(γ⊥
k (s)) = max {νℓk

· γ⊥
k (s), νℓk+1 · γ⊥

k (s)} < 1, for all s ∈ J◦
k ;

(D4) there exists a constant r∗ > 2κ/(1 − |θ∗|), such that

D =
⋃

x∈Ω
Wf (x;r∗)⊂D

Wf (x; r∗) and Dex =
⋃

x∈Ω
Wf (x;r∗)⊂Dex

Wf (x; r∗).

(D5) for any index 1 ≤ k ≤ nD and any 0 ≤ r ≤ r∗, let ∂Df (r) be the neighborhood
of ∂D ∩ Ω, defined as

∂Df(r) :=







{

x ∈ Ω inf
y∈∂D∩Ω

f(y−x) < r
}

, if ∂D ∩ Ω 6= ∅ and r > 0,

∅, otherwise.

Then, there exists a class of connected sets Γk(r) (0 < r ≤ r∗, k = 1, · · · , nD),
such that

(i) ∂Df (r) =

nD
⋃

k=1

Γk(r),

(ii) for any 0 < r ≤ r∗, the nD-interiors Γ◦
k(r) of Γk(r) (k = 1, · · · , nD) are

pairwise disjoint,

(iii) Γk =
⋂

0<r≤r∗

Γk(r) and Γ◦
k =

⋂

0<r≤r∗

Γ◦
k(r), for all k = 1, · · · , nD.
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Figure 1. Profile of an open set D ∈ D0(θ∗) (in case of m = 3)

Remark 5. With regard to the connected sets Γk(r) (0 < r ≤ r∗, k = 1, · · · , nD), it
is further seen that they can be taken to have some special geometric characteristics.
In fact, for any index 1 ≤ k ≤ nD, we find an affine transform Λk, consisting of an
orthogonal matrix Θk and a translation, and then the images ΛkΓk and ΛkΓk(r)
(0 < r ≤ r∗) correspond to one of the following two cases (see also Figures 2-3 to
get general ideas):

(case 1) f(Θ−1
k ξ) = f(ξ) for all ξ = (ξ1, ξ2) ∈ R

2, and there exists a constant
Rk ≥ r∗, such that:

{

ΛkΓk =
{

ξ = (ξ1, ξ2) ∈ R
2 f(ξ) = ν0 · ξ and ξ1 = Rk

}

,

ΛkΓk(r) = ((Rk + r)Wf \ (Rk − r)Wf ) ∩
{

ξ ∈ R
2 f(ξ) = ν0 · ξ

}

;

(case 2) f(Θ−1
k ν⊥

0 ) = cos π
2m

for a unit vector ν⊥
0 :=

(

0 −1
1 0

)

ν0 = (0, 1), and

there exist a compact interval Ik := [ak, bk], with −∞ < ak < bk < +∞, and
a function βk ∈ C2(Ik), such that:











|β′
k| ≤ tan π

2m
on Ik, ΛkΓk =

{

ξ ∈ R
2 ξ = (τ, βk(τ)), τ ∈ Ik

}

,

ΛkΓk(r) =
{

ξ ∈ R
2 ξ = (τ, ρ + βk(τ)), τ ∈ Ik, |ρ| < r sec π

2m

}

,

Λk(Γk(r) ∩ D) =
{

ξ = (ξ1, ξ2) ∈ ΛkΓk(r) ξ2 > βk(ξ1)
}

.

Now, in the first theorem, concrete profiles of some steady-state solutions are
presented, on the basis of the above notations.

Main Theorem 1. (Structural theorem for steady-state solutions) Under the same
notations as in Definition 3.1, let us set a class S∗(θ∗) of piecewise constant BV-
functions, by putting:

S∗(θ∗) :=
{

w = (1 + θ∗)χD + (−1 + θ∗)χDex − θ∗ D ∈ D∗(θ∗)
}

. (10)

Then, S∗(θ∗) is a subset of the solution class of the steady-state problem (E∞; θ∗)f .

Remark 6. The class S∗(θ∗), given in (10), includes two constant functions 1 and
−1 on Ω, that respectively correspond to the cases of D = Ω and D = ∅, in the
expressions as in (10). In the meantime, let us note that the class S∗(θ∗) is just a
proper subset of the solution class of (E∞; θ∗)f . In fact, it is easily checked that
the constant function −θ∗ on Ω solves (9), while −θ∗ /∈ S∗(θ∗). Besides, the class
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Figure 2. ΛkCk(r) in (case 1)
(in case of m = 3)

Figure 3. ΛkCk(r) in (case 2)
(in case of m = 3)

S∗(θ∗) does not include any nonconstant solution of (E∞; θ∗)f that represents in-
terfaces having contacts with the boundary Γ, as in [18, Example 4.3].

The second theorem is concerned with the stability analysis for steady-state
solutions, exemplified in the above.

Main Theorem 2. (Stability analysis for steady-state solutions) Under the same
notations as in Definition 3.1, Remark 5 and Main Theorem 1, let us fix any steady-
state solution w∗ = (1+ θ∗)χD +(−1+ θ∗)χDex − θ∗ ∈ S∗(θ∗) with D ∈ D∗(θ∗), and
let us fix positive constants ε̄ and δ̄, to satisfy:











• 2ε̄ + δ̄ ≤ 1 − |θ∗|, if w∗ ∈ S∗(θ∗) is given in constant cases,

• 0 <
2κ

1 − |θ∗| − 3ε̄
< r∗− δ̄, if w∗ ∈ S∗(θ∗) is given in nonconstant cases.

(11)

Then, any steady-state solution w∗ ∈ S∗(θ∗) shows the stability (restoring force for
oscillations), in the following sense.

(∗) For any 0 < ε < ε̄ and 0 < δ < δ̄, there exists a finite time t∗ = t∗(ε, δ),
depending on ε and δ, such that u(t) = w∗ a.e. in Ω \ ∂Df (δ), for any
t ≥ t∗, any function θ ∈ L2

loc([0, +∞); L2(Ω)) and any solution u of (E; θ)f ,
satisfying

|θ − θ∗|L∞(Q) ≤ ε̄ and |u(0) − w∗|L∞(Ω\∂Df (δ)) ≤ ε. (12)

In particular, when w∗ is constant on Ω, the value t∗(ε, δ) is determined indepen-
dently on δ, and hence the stability (∗) actually asserts the realization of the uniform
convergence of u(t) to w∗ on Ω, at the finite time t∗ = t∗(ε).

4. Proof of Main Theorem 1. In this section, we prove Main Theorem 1.
Let us take any w∗ ∈ S∗(θ∗). Then, as is easily seen, the main difficulty is in the

nonconstant (but piecewise constant) situation of w∗. In fact, when w∗ is constant,
namely when w∗ ≡ 1 on Ω or w∗ ≡ −1 on Ω, the variational inequality (9) will
immediately checked for w∗, since:

Φf (w∗) = 0 ≤ Φf (z) and |z| ≤ |w∗| = 1 a.e. in Ω, for all z ∈ D(Φf ).

When w∗ is nonconstant, namely when w∗ is expressed as a step function
(1 + θ∗)χD + (−1 + θ∗)χDex − θ∗ with the use of an open set D ∈ D0(θ∗), we
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first prepare Lipschitz functions λ(r) ∈ C0,1(R) ∩ Cc(R) (0 < r ≤ r∗) by putting:

λ(r)(ρ) :=



















−
1

r
ρ + 1, if 0 ≤ ρ < r,

1

r
ρ + 1, if −r < ρ < 0,

0, otherwise,

for all ρ ∈ R and all 0 < r ≤ r∗;

to define vectorial functions ν
(r)
∗ ∈ C0,1(Ω; R2) (0 < r ≤ r∗), as follows.

ν
(r)
∗ (x) :=







































σkΘ−1
k

(

λ(r)(f(Λkx) − Rk)

f(Λkx)
Λkx

)

,

if x ∈ Ck(r) in (case 1), for some index 1 ≤ k ≤ nD,

sec π
2m

Θ−1
k

(

λ(r sec π
2m

)(Λkx · ν⊥
0 − βk(Λkx · ν0))ν

⊥
0

)

,

if x ∈ Ck(r) in (case 2), for some index 1 ≤ k ≤ nD,

0 (= (0, 0)), otherwise;

(13)

for all x ∈ Ω and all 0 < r ≤ r∗, where σk (k = 1, · · · , nD) are sign constants (just
made for (case 1)), prescribed as:

σk :=







1, if Θ−1
k ν0 ·

Dws
∗

|Dws
∗|

≥ 0, H1-a.e. on Ck(r) ∩ ∂D,

−1, if Θ−1
k ν0 ·

Dws
∗

|Dws
∗|

< 0, H1-a.e. on Ck(r) ∩ ∂D,
k = 1, · · · , nD.

Then, with regard to the vectorial function ν
(r∗)
∗ under r = r∗, we have

f(ν
(r∗)
∗ ) ≤ 1, −κ div ν

(r∗)
∗



























≤
2κ

r∗
≤ 1 − |θ∗| ≤ w∗ + θ∗,

if w∗ = 1,

≥ −
2κ

r∗
≥ −(1 − |θ∗|) ≥ w∗ + θ∗,

if w∗ = −1,

a.e. in Ω, (14)

and ν
(r∗)
∗ ∈ ∂f◦(

Dws
∗

|Dws
∗|

), |Dws|-a.e. in Ω (actually H1-a.e. on ∂D); (15)

by fundamental calculations with helps from (4), (D1)-(D5) and Remark 5.
Here, let us set that

u(t) = w∗ in L2(Ω) and νCH(t) = ν
(r∗)
∗ in L∞(Ω; R2), for all t ≥ 0. (16)

Then, it is seen from (14) that the vectorial function νCH (≡ ν
(r∗)
∗ ) satisfies condi-

tions (a)-(b) as in Lemma 2.3. Furthermore, taking account of [3, Theorem 1.9 and
Proposition 2.3] and (15), we obtain that

−

∫

Ω

div ν
(r∗)
∗ w dx =

∫

Ω

ν
(r∗)
∗ · Dw∗

|Dw∗|
|Dw∗| =

∫

Ω

ν
(r∗)
∗ ·

Dws
∗

|Dws
∗|

|Dws
∗|

=

∫

Ω

f◦(
Dws

∗

|Dws
∗|

) |Dws
∗| =

∫

Ω

f◦(Dw∗) = Vf (w∗).

This implies that the function ν
(r∗)
∗ also satisfies the condition (c) as in Lemma 2.3,

since the remaining variational inequality (equality) immediately follows from the

condition that ν
(r∗)
∗ ≡ 0 on Γ.

Thus, applying Lemma 2.3 under (16), we conclude that w∗ is a solution of the
steady-state problem (E∞; θ∗)f .
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5. Proof of Main Theorem 2. This section is devoted to the proof of Main
Theorem 2.

First, we see the proof of nonconstant cases of the steady-state solution w∗ ∈
S∗(θ∗). Let us fix any nonconstant steady-state solution w∗ = (1 + θ∗)χD + (−1 +
θ∗)χDex − θ∗ ∈ S∗(θ∗) with the open set D ∈ D0(θ∗) and the constants ε̄ and δ̄ as

in (11). Also, for any 0 < δ < δ̄, let us set two subsets D
(+)
δ , D

(−)
δ ⊂ Ω, and two

functions u
(+)
δ , u

(−)
δ ∈ W 1,2

loc ([0, +∞); L2(Ω)), as follows.

D
(±)
δ :=

{

x ∈ Ω \ ∂Df (δ) w∗(x) = ±1
}

, and

u
(±)
δ (t) :=



















{(±1 + θ∗ ∓ 2ε̄) ± ε̄et}χ
D

(±)
δ

+ (∓1 + θ∗)χ(D
(±)
δ

)ex
− θ∗

in L2(Ω), if 0 ≤ t < log 2,

(±1 + θ∗)χD
(±)
δ

+ (∓1 + θ∗)χ(D
(±)
δ

)ex
− θ∗

in L2(Ω), if t ≥ log 2.

(17)

Then, due to (11), both D
(+)
δ and D

(−)
δ belong to the class D0(θ∗), however in

either case, the replacement of the constant r∗ by r∗ − δ (> 2κ/(1− |θ∗|)) is needed
to check the condition (D4). Therefore, by similar arguments as in the previous

section, we further see that the functions u
(+)
δ and u

(−)
δ respectively solve evolution

equations (E; θ
(+)
δ )f and (E; θ

(−)
δ )f , where θ

(±)
δ ∈ L∞([0, +∞); L∞(Ω)) are given

functions, prescribed as:

θ
(±)
δ (t) :=











θ∗ ∓ ε̄ − {(±1 + θ∗ ∓ 3ε̄) + κ div ν
(r∗−δ)
∗ }χ

D
(±)
δ

in L2(Ω),

if 0 ≤ t < log 2,

θ∗ ∓ ε̄ in L2(Ω), if t ≥ log 2,

with the use of the vectorial function ν
(r∗−δ)
∗ , as in (13), under r = r∗ − δ. Inciden-

tally, for the functions u
(±)
δ , the setting that:

ν
CH

(t) := ν
(r∗−δ)
∗ in L∞(Ω; R2), for all t ≥ 0;

will provide the exact expressions of the vectorial functions, denoted by ν
CH

, to
check the conditions (a)-(c) of Lemma 2.3.

Now, let us take any solution u of (E; θ)f , under the setting of (11)-(12). Then,
since:

{

u
(+)
δ (0) ≤ u(0) ≤ u

(−)
δ (0) a.e. in Ω,

θ
(+)
δ (t) ≤ θ∗ − ε̄ ≤ θ(t) ≤ θ∗ + ε̄ ≤ θ

(−)
δ (t) a.e. in Ω, for all t ≥ 0;

applying Lemma 2.4 under:

θ1 = θ
(+)
δ , θ2 = θ, u1 = u

(+)
δ and u2 = u

(resp. θ1 = θ, θ2 = θ
(−)
δ , u1 = u and u2 = u

(−)
δ );

yields that:

u
(+)
δ (t) ≤ u(t) (resp. u(t) ≤ u

(−)
δ (t)) a.e. in Ω, for all t ≥ 0. (18)

This implies the asserted stability (∗), and then the time log 2, as in (17), actually
indicates an upper bound for the finite time t∗ = t∗(ε, δ).

Next, let us consider the constant case of w∗ ∈ S∗(θ∗). The proof of this case will
be a simplified version of that of nonconstant case. More precisely, when w∗ ≡ 1
(resp. w∗ ≡ −1), we can show (∗) by using the following two functions:
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u(+)(t) := min {1, (1 + θ∗)e
t/2 − θ∗} and u(−)(t) := w∗

(

resp. u(+)(t) := w∗ and u(−)(t) := max {−1, (−1 + θ∗)e
t/2 − θ∗}

)

a.e. in Ω.

In fact, we easily see that three functions u, u(+) and u(−) fulfill the variational
inequality (7), under θ ≡ θ∗ in Q, namely they are all the solutions of the Allen-
Cahn equation (E; θ∗)f , satisfying u(+)(0) ≤ u(0) ≤ u(−)(0) a.e. in Ω. Hence, just

as in the derivation of (18), we conclude (∗), by using the comparison functions u(+)

and u(−), instead of u
(+)
δ and u

(−)
δ .
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289–304.

[17] K. Shirakawa, Stability for phase field systems involving indefinite surface tension coefficients,
“Dissipative phase transitions,” Ser. Adv. Math. Appl. Sci., 71, World Sci. Publ., Hackensack,
NJ, (2006), 269–288.

[18] K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with

the total variation energy, Nonlinear Anal., 60 (2005), 257–282.
[19] A. Visintin, “Models of Phase Transitions,” Progress in Nonlinear Differential Equations and

Their Applications, 28, Birkhäuser, Boston (1996).
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