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Abstract. In the paper we consider a stochastic integral inclusion with dis-
continuous multivalued right hand side, driven by a continuous semimartingale.
Using selection properties and lower and upper solutions methods we demon-
strate the existence of strong solutions for such inclusions. We extend some
recent results both for deterministic differential inclusions and for stochastic
differential equations for increasing operators.

1. Introduction. In general, investigating stochastically controlled dynamical sys-
tems by methods of multivalued analysis requires an appropriate kind of regularity
of their multivalued structure. The properties of Lipschitz continuity, lower or up-
per semicontinuity, and maximal monotonicity are most often considered (see e.g.
[2], [3], [4], [12], [13], [10], [11] and references therein). In this paper, we consider
a stochastic inclusion for classes of increasing and “upper separated“ set-valued
functions (see [14]). Neither an increasing nor an upper separated multifunction
need satisfy any of the classical continuity properties. The upper separatedness of
a set-valued function F is necessary for the existence of a convex selection of F . As
a consequence, using lower and upper solution method, we deduce the existence of
solutions of stochastic inclusions with right-hand sides taken from these classes of
multifunctions. Our technique involves combining selection procedures, the method
of upper and lower solutions, stochastic comparison theorems and Amann’s fixed
point theorem. This enables us to investigate Itô stochastic inclusions for new
classes of multivalued integrands. The work presented here extends results ob-
tained recently both for differential inclusions (see e.g [1]) and stochastic equations
(see e.g.[7], [8]).

We begin our considerations with some notations and auxiliary notions. Let
(Ω,F, {Ft}t≥0

, P ) be a complete filtered probability space satisfying the usual hy-
pothesis, i.e., {Ft}t≥0

is an increasing and right continuous family of σ-subalgebras
of F and F0 contains all P -null sets. Let P(Ft) denote the smallest σ-algebra
on R+ ×Ω with respect to which every continuous adapted process is measurable.
A stochastic process x is said to be predictable if x is P(Ft)-measurable. In
this case we will write x ∈ P(Ft). One has P(Ft) ⊂ β ⊗ F , where β denotes
the Borel σ -algebra on R+. Let R = (R(t))

t≥0
be a set-valued stochastic pro-

cess with values in Comp(Rn), the space of all compact subsets of R
n considered

with a Hausdorff metric h(·, ·), i.e., a family of F measurable set-valued mappings
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R(t) : Ω → Comp(Rn), each t ∈ R+. We call R measurable if it is β ⊗ F measur-
able in the sense of set-valued functions. Similarly, R is {Ft}t≥0

-adapted if R(t) is
Ft-measurable for each t ∈ R+. We call R predictable if R is P(Ft) -measurable.
Given a predictable set-valued process R = (Rt)t∈R+ and a semimartingale Z let
us denote

S(R, Z) := {r ∈ P(Ft) : rt ∈ Rt for each t ∈ R+ a.e. and r is Z integrable}.

For conditions of Z-integrability see [16] Chapter IV. A predictable set-valued pro-
cess R is said to be integrable with respect to a semimartingale Z (or simply
Z-integrable) if S(R, Z) is a nonempty set. Then, we define a set-valued Itô- type
stochastic integral

∫

RtdZt :=

{
∫

rtdZt : r ∈ S(R, Z)

}

.

Consider an Ft- adapted, continuous local martingale M and an Ft- adapted con-
tinuous increasing process A. Let us also consider predictable set-valued functions
F, G : R+ ×Ω×R → Cl(R), where Cl(R) denotes the class of nonempty and closed
subsets in R.

Definition 1.1. By an Itô stochastic inclusion we mean the relation

Xt − Xs ∈

∫ t

s

F (u, Xu)dAu +

∫ t

0

G(u, Xu)dMu, (1)

X0 = x0.

The above inclusion is well-defined if its right-hand side is nonempty.

Definition 1.2. A continuous semimartingale X defined on a filtered probability
space (Ω,F, {Ft}t≥0, P ) is said to be a strong solution (upper or lower solution) to
the stochastic inclusion (1) if it satisfies the relation:

Xt = (≥,≤) X0 +

∫ t

0

usdAs +

∫ t

0

vsdMs, t ≥ 0,

for some Ft-adapted stochastic processes ut ∈ F (t, Xt) , vt ∈ G(t, Xt) provided the
Lebegue-Stieltjes integral and stochastic integral above exist.

2. Increasing and upper separated set-valued maps and their selections.

We describe below the classes of noncontinuous set-valued mappings appearing on
the right-hand side of our inclusion (1). Let X = (X ,�) be an ordered topological
space, i.e. the order intervals [a) := {x ∈ X : a � x} and (a] := {x ∈ X : x � a}
are closed sets in the space X for all a ∈ X . We will use the following increasing
set-valued mappings (see e.g.[1] and [6]).

Definition 2.1. A set-valued mapping F : X → 2X is said to be increasing upward
if for every x, y ∈ X , x � y and z ∈ F (x), there exists w ∈ F (y) such that z � w.

Definition 2.2. A set-valued mapping F : X → 2X is said to be isotone increasing
if for every x, y ∈ X , x � y and z ∈ F (x) we have z � w for every w ∈ F (y).
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Increasing set-valued mappings (isotone or upward) need not be upper or lower
semicontinuous or even maximally monotone in the sense of multivalued analysis
[9]. Isotone increasing set-valued mappings have been used in [1] to obtain existence
results for ordinary differential inclusions via a lattice fixed point theorem and the
method of upper and lower solutions. The notion of increasing upward multifunc-
tions has been used recently in [6] in the context of their fixed points and further
applications. For our purposes here we use the increasing upward set-valued func-
tions. That is, such mapping will appear in the drift term of the stochastic inclusion
(1). For set-valued random and increasing functions we have the following result.

Proposition 1. Let F : R+ × Ω × R → Comp(R) be a P(Ft) ⊗ β measurable
set-valued function with compact subsets of R, such that the mapping F (t, ω, ·) is
increasing upward for every (t, ω) ∈ R+ × Ω. Then, the function

f(t, ω, x) := supF (t, ω, x)

is a predictable and increasing selection of F.

Proof. Since, for every fixed x ∈ X, F (·, ·, x) is a predictable set-valued function,
by Proposition 2.32 in [9] we conclude the predictability of the mapping (t, ω) →
supF (t, ω, x), for every fixed x ∈ R. The rest of the proof follows immediately by
the properties of the multifunction F.

Let G be a set-valued function from a Banach space X into nonempty subsets of
R̄. We define upper and lower bounds of G by formulas

VG : X → R̄, VG(x) = sup{a : a ∈ G(x)},

WG : X → R̄, WG(x) = inf{b : b ∈ G(x)}.

Definition 2.3 ([14]). We say that G is upper separated if for every x ∈ DomG
and ǫ > 0 there exists a hyperplane Hx,ǫ strongly separating a point (x, WG(x)− ǫ)
from the set Epi(VG) := {(x, a) ∈ X × R : VG(x) ≤ a} .

Theorem 2.4. Let G :R+ ×Ω×X → Conv(R) be a proper P(Ft)⊗β(X) measur-
able set-valued function with closed and convex subsets of R̄. If G(t, ω, ·) is upper
separated then it admits a predictable, convex and lower semicontinuous selection.

Proof. By Proposition 2.32 in [9] we conclude the predictability of the mapping
(t, ω) → VG(t,ω,·)(x), for every fixed x ∈ X. Similarly, one has the predictability for
the mapping (t, ω) → WG(t,ω,·)(x), for every fixed x ∈ X. Fix (t, ω) ∈ R+ × Ω. Let
V ∗∗

G(t,ω,·) denote the second conjugate function of VG(t,ω,·) i.e.

V ∗∗
G(t,ω,·)(x) = sup

p∈X∗

{

p(x) − sup
x∈X

(p(x) − VG(t,ω,·)(x))

}

.

Thus, the mapping (t, ω) → V ∗∗
G(t,ω,·) is predictably measurable as well. We will

prove that for every x, V ∗∗
G(t,ω,·)(x) ∈ G(t, ω, x). Let x ∈ DomVG(t,ω,·) (i.e., such

that VG(t,ω,·)(x) < ∞) and ǫ > 0. Since G(t, ω, ·) is upper separated, then there
exists a continuous linear functional x∗

x,ǫ strictly separating (x, WG(t,ω,·)(x)−ǫ) from
the set Epi(VG(t,ω,·)). Let x∗

x,ǫ be represented by the pair (p, a) ∈ X∗ × R. Then
there exists δ > 0 such that for every y ∈ DomVG(t,ω,·) and each b ≥ 0

(p, a)((y, VG(t,ω,·)(y) + b)) ≤ (p, a)((x, WG(t,ω,·)(x) − ǫ)) − δ.
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Then we get

p(y) + aVG(t,ω,·)(y) + ab ≤ p(x) + aWG(t,ω,·)(x) − aǫ − δ.

Taking the supremum over b we deduce that a ≤ 0. Assume first that a < 0. Then
dividing by −a and denoting −p/a = q we get

q(y) − VG(t,ω,·)(y) ≤ q(x) − WG(t,ω,·)(x) + ǫ + δ/a.

Taking the supremum over y ∈ DomVG(t,ω,·) we obtain

V ∗
G(t,ω,·)(q) := sup

y∈DomVG(t,ω,·)

(q(y) − VG(t,ω,·)(y)) ≤ q(x) − WG(t,ω,·)(x) + ǫ + δ/a.

Then

WG(t,ω,·)(x) − ǫ ≤ q(x) − V ∗
G(t,ω,·)(q) + δ/a ≤ q(x) − V ∗

G(t,ω,·)(q)

≤ supq(q(x) − V ∗
G(t,ω,·)(q)) = V ∗∗

G(t,ω,·)(x).

Letting ǫ converge to 0 we obtain

WG(t,ω,·)(x) ≤ V ∗∗
G(t,ω,·)(x)

for every x ∈ DomVG(t,ω,·). Now assume a = 0. Then x /∈ DomVG(t,ω,·). Indeed,
for every x ∈ DomVG(t,ω,·), and for y = x, we get

p(x) + aVG(t,ω,·)(x) ≤ p(x) + aWG(t,ω,·)(x) − aǫ − δ

and therefore

a(VG(t,ω,·)(x) − WG(t,ω,·)(x) − ǫ) ≤ −δ.

Hence, for each x ∈ DomVG(t,ω,·) a cannot be equal to 0. However, taking a = 0
and x /∈ DomVG(t,ω,·) we get for every y ∈ DomVG(t,ω,·) that

p(y) ≤ p(x) − δ. (2)

Let r ∈ DomV ∗
G(t,ω,·). By the definition of V ∗

G(t,ω,·) we deduce that

r(y) − VG(t,ω,·)(y) ≤ V ∗
G(t,ω,·)(r)

Adding this to the inequality (2) multiplied by n > 0, we obtain

(np + r)(y) − VG(t,ω,·)(y) ≤ np(x) − nδ + V ∗
G(t,ω,·)(r)

Taking the supremum over y ∈ DomVG(t,ω,·) we have

V ∗
G(t,ω,·)(np + r) ≤ np(x) − nδ + V ∗

G(t,ω,·)(r).

Hence

r(x) + nδ − V ∗
G(t,ω,·)(r) ≤ (np + r)(x) − V ∗

G(t,ω,·)(np + r).

By the definition of V ∗∗
G(t,ω,·) we get

r(x) + nδ − V ∗
G(t,ω,·)(r) ≤ V ∗∗

G(t,ω,·)(x)

for every n and x /∈ DomVG(t,ω,·). Taking n → ∞ we deduce V ∗∗
G(t,ω,·)(x) = ∞ and

thus

WG(t,ω,·)(x) ≤ V ∗∗
G(t,ω,·)(x)

for every x ∈ X . Since G admits closed convex values and

WG(t,ω,·)(x) ≤ V ∗∗
G(t,ω,·)(x) ≤ VG(t,ω,·)(x),

then by Theorem 11.1 of [17], we deduce that V ∗∗
G(t,ω,·) is a predictable, proper lower

semicontinuous and convex selection of G. This completes the proof.



552 MARIUSZ MICHTA

Corollary 1. Let G :R+×Ω×R
n → Conv(R) be a proper P(Ft)⊗β measurable set-

valued function with closed and convex subsets of R̄. If G(t, ω, ·) is upper separated
then it admits a predictable, convex and continuous selection.

3. Strong solutions. Below we present a result concerning the existence of strong
solutions of an Itô stochastic inclusion with predictable, increasing upward and
upper separated set-valued functions F and G, respectively. The method of the
proof is essentially based on the selection results given above, the method of upper
and lower solutions to the inclusion (1) and Amann’s fixed point theorem.

If we consider increasing upward and upper separated set valued mappings then,
as pointed out above, they need not satisfy both a global Lipschitz and a linear
growth condition. Hence there may be solutions of Itô stochastic inclusion that do
not exist globally. In other words there may exist solutions which have finite time
explosions. We recall that a random variable θX is an explosion time for a solution
process X if X is a solution to the Itô inclusion on [0, θX), XθX

= +∞ P.1 on
{θX < ∞} and θX = limSn, where

Sn := inf{t > 0 : |Xt| > n}, for n ≥ 1.

The case P{θX = ∞} = 1 refers to that of a nonexploding solution, while P{θX <
∞} > 0 to an exploding one. Since we are dealing with upper and lower solutions
for stochastic inclusions which can possess only local solutions (viz., solutions up
to an explosion time), we will consider also local upper and lower solutions. We
present now the main results of the paper.

Theorem 3.1. Let F : R+×Ω×R → Comp(R) be a P(Ft)⊗β measurable set-valued
function with compact subsets of R, such that the mapping F (t, ω, ·) is increasing
upward for every (t, ω) ∈ R+ × Ω. Let G : R+ × Ω × R → Conv(R) be a proper,
P(Ft)⊗β measurable set-valued function with closed and convex subsets of R̄, such
that the mapping G(t, ω, ·) is upper separated, for every (t, ω) ∈ R+ × Ω. If there
exist upper and lower local sulutions U and L for stochastic inclusion:

Xt − Xs ∈

∫ t

s

F (u, Xu)dAu +

∫ t

s

G(u, Xu)dMu,

X0 = x0.

such that L0 ≤ x0 ≤ U0 a.e., then it admits at least one strong solution X (up to
an explosion time) such that

P{Lt ≤ Xt ≤ Ut, for every t ∈ [0, θ)} = 1,where θ = θL ∧ θU .

Proof. By Proposition 1 and Corollary 1, there exist a predictable and increasing
selection f , and a predictable, convex and continuous selection g for set-valued
mappings F and G respectively. By Proposition 1.6 [15] the function x → g(t, ω, x)
is also locally Lipschitzian at any point, for (t, ω) ∈ R+ × Ω. Hence the processes
U and L are also upper and lower solutions for stochastic equation

Xt = x0 +

∫ t

0

f(u, Xu)dAu +

∫ t

0

g(u, Xu)dMu. (3)

Thus the study of existence of solutions to stochastic inclusion can be reduced to
the existence of solutions to the stochastic equation above. The rest of the proof
will follow directly from lemmas below.
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Lemma 3.2. Let A be continuous, Ft- adapted incresing process and let M be
continuous, Ft- adapted local maringale. Let f, g : R+ × Ω × R → R be a P(Ft) ⊗
β measurable mappings such that:

a) x → f(t, ω, x) is increasing and globally Lipschitzian (with a Lipschitz constant
K,

b) x → g(t, ω, x) is locally Lipschitzian, i.e. for each N > 0, there exists a
predictable process GN (t, ω) such that

|g(t, x) − g(t, y)| ≤ GN (t)|x − y|,
∫ t

0

GN (s)d[Ms] < ∞ P.1

for all t ∈ [0, N ], and x, y ∈ R such that |x| ≤ N, |y| ≤ N.
If there exist upper and lower local sulutions U and L for stochastic equation

Xt = x0 +

∫ t

0

f(u, Xu)dAu +

∫ t

0

g(u, Xu)dMu (4)

such that L0 ≤ x0 ≤ U0 a.e., then

P{Lt ≤ Xt ≤ Ut, for every t ∈ [0, θ)} = 1,

for an unique local strong solution X to the equation (4) and θ = θL ∧ θU .

Proof. The existence of an unique local strong solution to equation (4) follows by
Proposition 2.3 in [5]. We shall prove that

P{Xt ≤ Ut, for every t ∈ [0, θU )} = 1.

In a similar way one can prove that P{Lt ≤ Xt, t ∈ [0, θL)} = 1. For every N ≥ 1
we define a sequence of stopping times

TN := inf{t ∈ [0, θU ) : |Xt| ∨ |Ut| ∨ [M ]t ∨ |At| > N} ∧ N.

Then we have TN ր θU , for N → +∞. Next we define a stopping time

τ := inf{t ≥ 0 : Xt − Ut > 0}.

It is enough to show that for each N

P{τ < TN} = 0.

Indeed, if it is true then we will get that P{τ < θU} = 0, which means P{Xt ≤ Ut,
for every t ∈ [0, θU )} = 1. For every q ∈ Q+ and N ≥ 1, let us define σN

q :=

(τ +q)∧TN and ΩN
q := {ω : XσN

q
−UσN

q
> 0}. Let us note the following implication

for every q ∈ Q+ and N ≥ 1 :

P{ΩN
q } = 0 ⇒ P{τ < TN} = 0.

Indeed, let us fix N ≥ 1 and suppose P{ΩN
q } = 0, for arbitrary q ∈ Q+. Then we

have XσN
q
− UσN

q
≤ 0 a.e. on {τ < TN}. Thus, since X and U have continuous

paths, we have also

X(τ+t)∧TN
− U(τ+t)∧TN

≤ 0 a.e.on {τ < TN}

for every t ≥ 0. Hence, it follows that for a.e. ω ∈ {τ < TN} and s ∈ [τ(ω), TN (ω)]
one has Xs − Us ≤ 0. But since X0 ≤ U0 and also Xτ ≤ Uτ a.e., by the definition
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of the stopping time τ we get P{τ < TN} = 0. So, it is enough to show now that
P{ΩN

q } = 0. Let us fix q ∈ Q+ and N ≥ 1 and define:

αN
q := sup{t ∈ [0, σN

q ) : Xt ≤ Ut}.

Since Xτ ≤ Uτ a.e. we observe that τ (ω) ≤ αN
q (ω), for ω ∈ {τ < +∞}. Conse-

quently, by continuity of X and U we get the inequality:

XαN
q
≤ UαN

q
a.e. on {τ < TN}.

By the definition of σN
q , αN

q and ΩN
q we have

ΩN
q := {XσN

q
− UσN

q
> 0} = {αN

q < σN
q }

and then ΩN
q ∈ FαN

q
. Hence, for ω ∈ ΩN

q and t ∈ (αN
q (ω) , σN

q (ω)] we get an

inequality Xt > Ut. By assumption, the process U is an upper local solution of
the equation (4). Consequently, for ω ∈ ΩN

q and t ∈ (αN
q (ω) , σN

q (ω)] we get the
inequality:

Xt − Ut ≤

∫ t

αN
q

[f(s, Xs) − f(s, Us)]dAs +

∫ t

αN
q

[g(s, Xs) − g(s, Us)]dMs. (5)

Let us denote

Vt :=

∫ t

αN
q

[f(s, Xs) − f(s, Us)]dAs +

∫ t

αN
q

[g(s, Xs) − g(s, Us)]dMs,

for simplicity. This process is a continuous semimartingale. Thus the inequality (5)
can be rewritten as

[Xt − Ut]IΩN
q

I(αN
q ,σN

q ](t) ≤ VtIΩN
q

I(αN
q ,σN

q ](t). (6)

Let us take the semimartingale V + := max{V, 0}. By the Tanaka formula (see e.g.
[16]) we obtain the following equality:

V +
t IΩN

q
= V +

αN
q

IΩN
q

+ IΩN
q

∫ t

αN
q

I{Vs>0}dVs+
1

2
IΩN

q

[

L0
t (V ) − L0

αN
q

(V )
]

,

where Lx
t (V ) denotes a local time at the point x for the semimartingale V . Similarly

as in Lemma 3.2. [5] one can prove that L0
t (V ) − L0

αN
q

(V ) = 0, for t ∈ (αN
q , σN

q ] on

ΩN
q . Thus, because V +

αN
q

IΩN
q

= 0 and ΩN
q ∈ FαN

q
, the last equality has the form

V +
t IΩN

q
=

∫ t

αN
q

I{Vs>0}IΩN
q

[f(s, Xs) − f(s, Us)]dAs+Nt, (7)

where Nt :=
∫ t

αN
q

I{Vs>0}IΩN
q

[g(s, Xs) − g(s, Us)]dMs is a continuous local martin-

gale. By the assumption a) the mapping x → f(t, ω, x) is increasing and glob-
ally Lipschitzian (with a Lipschitz constant K). Since, for ω ∈ ΩN

q and t ∈

(αN
q (ω) , σN

q (ω)] we have had the inequality Xt > Ut, we obtain

IΩN
q

[f(s, Xs) − f(s, Us)] ≥ 0.

Thus, by (7) it follows that

V +
t IΩN

q
≤ Nt + K

∫ t

αN
q

I{Vs>0}IΩN
q

[Xs − Us]dAs.
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Hence, using the inequality (6) one obtains the inequality

V +
t IΩN

q
≤ Nt +

∫ t

αN
q

V +
s d

(

∫ ·

αN
q

KdAu

)

s

.

Let us denote Z :=
∫ ·

αN
q

KdAu. Now, using the Stochastic Gronwall inequality (cf

e.g., Lemma 2, [18]) we obtain

IΩN
q

V +
σN

q
exp

(

−ZσN
q

)

≤ NαN
q

exp
(

−ZαN
q

)

+

∫ σN
q

αN
q

exp (−Zu) dNu.

Thus, because NαN
q

= 0 we have the inequality

E
(

IΩN
q

V +
σN

q
exp

(

−ZσN
q

))

≤ E

∫ σN
q

αN
q

exp (−Zu) dNu = 0.

Consequently, using the inequality (6) once again we get

IΩN
q

[

XσN
q
− UσN

q

]

≤ IΩN
q

V +
σN

q
= 0 a.e.

Hence XσN
q

≤ UσN
q

on ΩN
q a.e. and finaly P{ΩN

q } = 0. This completes the proof of

Lemma 3.2.

Lemma 3.3. Let A be continuous, Ft- adapted incresing process and let M be
continuous, Ft- adapted local maringale. Let f, g : R+ × Ω × R → R be a P(Ft) ⊗
β measurable mappings such that:

a) x → f(t, ω, x) is increasing,
b) x → g(t, ω, x) is locally Lipschitzian.

If there exist upper and lower local sulutions U and L for the stochastic equation

Xt = x0 +

∫ t

0

f(u, Xu)dAu +

∫ t

0

g(u, Xu)dMu (8)

such that L0 ≤ x0 ≤ U0 a.e., then there exists a local strong solution X to the
equation (8) such that

P{Lt ≤ Xt ≤ Ut, for every t ∈ [0, θ)} = 1, where θ = θL ∧ θU .

Proof. Let X be a space of Ft- adapted and continuous processes endowed with the
order relation �:

X � Y if and only if P{Xt ≤ Yt, for every t ≥ 0} = 1,

for X, Y ∈ X . In the space (X ,�) we consider a subset

D := [L, U ] := {Z ∈ X : P{Lt ≤ Zt ≤ Ut, t ∈ [0, θ)} = 1},

where θ = θL ∧ θU . Let Z ∈ D be fixed. Then by Lemma 3.2 there exists a unique
local strong solution X∗ of the equation:

X∗
t = x0 +

∫ t

0

f(u, Zu)dAu +

∫ t

0

g(u, X∗
u)dMu (9)

Let us introduce a single valued operator S : D → X as S(Z) = X∗. Since the
mapping x → f(t, ω, x) is increasing and the process L is a lower solution for the
equation (8), we obtain

Lt − Ls ≤

∫ t

s

f(u, Zu)dAu +

∫ t

s

g(u, Lu)dMu.
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Thus, the process L is also a lower local solution to equation (9). In a similar way
one can show that the process U satisfies the inequality

Ut − Us ≥

∫ t

s

f(u, Zu)dAu +

∫ t

s

g(u, Uu)dMu,

which means that it is the upper local solution of (9). Hence, by Lemma 3.2 we
obtain

P{Lt ≤ S(Z)t ≤ Ut, t ∈ [0, θ)} = 1.

Since Z has been an arbitrary process from D, we conclude that S : D → D. In
particular we have L � S(L) and S(U) � U. To complete the proof it is enough to
show that S has a fixed point. We shall apply Amann’s fixed point theorem (see
e.g.[19]). We show that S is an increasing mapping with respect to the order � .
Indeed, let us take Z1, Z2 ∈ D and Z1 � Z2. Let X i := S(Zi) i.e.

X i
t = x0 +

∫ t

0

f(u, Zi
u)dAu +

∫ t

0

g(u, X i
u)dMu, i = 1, 2.

By the monotone property of the mapping x → f(t, ω, x) we have

X1
t − X1

s ≤

∫ t

s

f(u, Z2
u)dAu +

∫ t

s

g(u, X1
u)dMu.

Hence the process X1is a local lower solution of the equation

Xt = x0 +

∫ t

0

f(u, Z2
u)dAu +

∫ t

s

g(u, Xu)dMu (10)

which has a unique local strong solution X2 = S(Z2). On the other hand, since
Z2 � U and U is an upper solution to equation (8), by the properties of the
mapping x → f(t, ω, x) we arrive to the inequality:

Ut − Us ≥

∫ t

s

f(u, Z2
u)dAu +

∫ t

s

g(u, Uu)dMu.

This means that the process U is an upper local solution of the equation (10). Using

Lemma 3.2 once again we obtain

P{Lt ≤ S(Z1)t ≤ S(Z2)t ≤ Ut, t ∈ [0, θ)} = 1.

Finally, by Amann’s theorem, there exist a fixed point of S in D. This completes
the proof of Lemma 3.3 and consequently the proof of Theorem 3.1.
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