
DISCRETE AND CONTINUOUS Website: www.aimSciences.org
DYNAMICAL SYSTEMS
Supplement 2009 pp. 496–505

A ROBUST FINITE ELEMENT METHOD FOR SINGULARLY

PERTURBED CONVECTION-DIFFUSION PROBLEMS

Runchang Lin

Department of Mathematical and Physical Sciences,
Texas A&M International University

Laredo, Texas, 78041-1900, USA

Abstract. In this paper, we consider a convection-diffusion boundary value
problem with singular perturbation. A finite element method (FEM) is pro-
posed based on discontinuous Galerkin (DG) discretization of least-squares
variational formulation. Numerical tests on representative problems reveal
that the method is robust and efficient.

1. Introduction. We consider the following convection-diffusion problem
{

−ǫu′′(x) + b(x)u′(x) + c(x)u(x) = f(x) in Ω = (0, 1),
u(0) = u(1) = 0,

(1)

where 0 < ǫ ≪ 1 is a parameter, b ∈ W 1,∞(Ω) with b ≥ β > 0 on Ω, c ∈ L∞(Ω)
with c > 0 on Ω, f ∈ L2(Ω), and

c − b′/2 ≥ γ > 0 on Ω. (2)

Here the constants β and γ are independent of ǫ. Note that hypothesis (2) can be
ensured by a change of variable of the form v = e−σxu with suitably chosen σ; see
[27] for details. Under the assumptions of initial data, the problem (1) admits a
unique solution in H1

0 (Ω) ∩ H2(Ω); cf., e.g., [22, 26].
In the convection dominated case (i.e. ǫ ≪ β), the solution to (1) has a boundary

layer at x = 1, which causes nonphysical oscillations in the numerical solutions
by standard Galerkin FEMs. Over the years many stabilization techniques have
been suggested, including upwind, Petrov-Galerkin, streamline diffusion FEMs, and
anisotropic mesh adaptation. For an overview of these methods, we refer to, e.g., the
books [14, 21, 22, 26] and the references therein. Nonetheless, singularly perturbed
problems remain difficult to solve numerically.

The purpose of this paper is to develop a robust approximation of the singularly
perturbed problem (1) based on DG discretization of least-squares variational for-
mulation. The least-squares finite element method (LSFEM) has become increas-
ingly popular lately for numerical solutions of boundary value problems. Least-
squares principles give rise to unconstrained minimization problems through a vari-
ational framework of residual minimization. For linear differential equations, the
LSFEM leads to symmetric positive-definite algebraic systems which can be effi-
ciently solved by iterative methods. The LSFEM possesses a series of significant
and valuable properties, such as freedom in choosing finite element spaces, optimal
error estimates, easy application to a wide range of problems, etc. The LSFEM
has been applied to solve many convection-reaction-diffusion problems, see, e.g.,
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[4, 6, 9, 10, 12, 18, 24, 25]. Extensive reviews and studies of the method can be
found in [5] and [17].

In spite of its attractive features, the use of the LSFEM is restricted by several
disadvantages [7, 9, 10]. In particular, comparing with standard Galerkin FEMs, the
least-squares variational formulation requires higher regularity of solution spaces.
Moreover, as illustrated in [19] and Section 4 of this paper, the classic LSFEM is in-
efficient for singularly perturbed problems, especially in and near boundary layers.
In order to remedy the defects, discontinuous approximation spaces have been used
to discretize least-squares formulations for solving a variety of problems. For exam-
ple, Cao and Gunzburger [11] used least-squares methods with discontinuous ele-
ments to treat interface problems. Gerritsma and Proot [15] derived a discontinuous
least-squares spectral element method for a sample first order ordinary differential
equation. Bensow and Larson applied discontinuous LSFEMs to elliptic problems
[2] and div-curl problems [3] with boundary singularities. Meanwhile, least-squares
technique has also been used as a stabilizer of DG methods. For instance, Hous-
ton, Jensen, and Süli [16] investigated a general family of hp-discontinuous Galerkin
FEMs with least-squares stabilization for symmetric systems of first-order partial
differential equations.

Recently, the author proposed a discontinuously discretized LSFEM for singularly
perturbed reaction-diffusion problems [19, 20]. The boundary value problem is
decomposed into a first-order system to which a suitable weighted least-squares
formulation is proposed. DG discretization is performed for the weak formulation.
The numerical approach is stable and efficient. We hereby extend the method
and develop a robust numerical approximation for singularly perturbed convection-
diffusion problems.

The remainder of this paper is organized as follows. Section 2 includes nota-
tions utilized in this paper. In Section 3, we present the least-squares variational
formulation and the LSFEM for the problem. Coercivity estimate of the bilinear
form is proved in an associated norm. In Section 4, numerical examples are given.
Conclusions are drawn in Section 5.

2. Notation. In this paper we shall use C to denote a generic positive constant
which is independent of the singular perturbation parameter ǫ and of the mesh used.
Vectors and scalers will be denoted by bold and plain letters, respectively.

We shall use standard notations for Sobolev spaces throughout this paper. In
particular, the inner product in L2(Ω) and [L2(Ω)]2 are denoted by

(v, w) =

∫ 1

0

vw dx and (v,w) =

∫ 1

0

v · w dx,

respectively, where v · w is the vector inner product of v and w. The associated
L2-norm is denoted as || · ||0. For s > 0, the Sobolev space Hs(Ω) has norms || · ||t
and seminorms | · |t, 1 ≤ t ≤ s. Similar norms and seminorms can be defined for
[Hs(Ω)]2, which will be denoted also as || · ||t and | · |t, respectively, 1 ≤ t ≤ s. We
recall the space H1

0 (Ω) consisting of all functions in H1(Ω) that vanish at boundary
points 0 and 1. By the Poincaré-Friedrichs inequality, | · |1 is a norm on H1

0 (Ω)
equivalent to || · ||1.

Let Th = {Ωk}M
k=1 = {[xk−1, xk]}M

k=1 be an equidistance partition of Ω, where
xk = kh for k = 0, . . . , M with mesh size parameter h = 1/M . Note that an
anisotropic mesh (e.g. Shishkin mesh) will certainly improve numerical results,
which is however not necessary for our method.
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We shall use the following broken Sobolev space

H1(Th) =
{
v ∈ L2(Ω) : v|Ωk

∈ H1(Ωk), k = 1, . . . , M
}

,

where H1(Ωk) is the Sobolev space of order 1 on Ωk. The inner products and norms
defined on Ω can be taken over the elements Ωk, which are denoted by (·, ·)Ωk

and
|| · ||1,Ωk

, respectively. For v ∈ H1(Th), we define its norm and seminorm as

||v||21 =

M∑

k=1

||v||21,Ωk
and |v|21 =

M∑

k=1

|v|21,Ωk
, (3)

respectively. In (3), we use the same norm notations as in the continuous Sobolev
spaces, which will cause no ambiguity. We define H1

0 (Th) the subspace of H1(Th)
consisting of all functions that vanish at 0 and 1.

Finally, we define the finite element space associated with Th as

Vh = V h × V h
0 ⊂ H1(Th) × H1

0 (Th),

where V h ⊂ H1(Th) is the space of piecewise linear polynomials allowing discontinu-
ity at interelement nodes, and V h

0 is the subspace of V h which consists of functions

vanishing at 0 and 1. A basis of V h can be
{
N+

k−1, N
−
k

}M

k=1
, where

N+
k−1(x) =

{ xk − x

h
x ∈ Ωk,

0 otherwise,

N−
k (x) =

{ x − xk−1

h
x ∈ Ωk,

0 otherwise.

3. Weak formulation and discrete problem. Problem (1) is equivalent to





p − u′ = 0 in Ω,
−ǫp′ + bu′ + cu = f in Ω,
u(0) = u(1) = 0.

(4)

Let u =

(
p
u

)
∈ H1(Ω) × H1

0 (Ω). We define

Au =

( √
ǫ(p − u′)

−ǫp′ + bu′ + cu

)
and f =

(
0
f

)
.

Notice that weight
√

ǫ is employed in the first component of Au. Equation (4) can
thus be written as

Au = f in Ω. (5)

The homogenous boundary condition in (4) is satisfied since u ∈ H1
0 (Ω). Note that

problem (1) has a unique solution in H1
0 (Ω) ∩ H2(Ω). Therefore problem (5) has a

unique solution in H1(Ω) × H1
0 (Ω).

We need some a priori estimates for the solution u. The following stability result
can be found in [26].

Lemma 3.1. Let u be the solution of (1). Then the following a priori estimates
hold

|u(i)(x)| ≤ C

(
1 + ǫ−i exp

(
−β

1 − x

ǫ

))

for x ∈ Ω and 0 ≤ i ≤ 2.
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As immediate consequences of Lemma 3.1, we have |u|2 = O(ǫ−3/2) and |u|1 =
O(ǫ−1/2). Therefore the standard Sobolev norm ||u||2 or ||u||1 does not provide
an informative gauge when ǫ is small. It is natural to introduce the following ǫ-
dependent norm in H1(Ω) (cf. [26])

||v||21,ǫ = ǫ|v|21 + ||v||20.

In addition, we present ǫ-dependent norms in H1(Ω) × H1
0 (Ω) as

||v||20,ǫ = ǫ||q||20 + ||v||20,
||v||21,ǫ = ǫ3|q|21 + ǫ|v|21 + ||v||20,ǫ,

where v =

(
q
v

)
. Similarly, ǫ-dependent norms can be defined in H1(Th) as

||v||21,ǫ =

M∑

k=1

||v||21,ǫ,Ωk
,

where

||v||21,ǫ,Ωk
= ǫ|v|21,Ωk

+ ||v||20,Ωk
;

and in H1(Th) × H1
0 (Th) as

||v||20,ǫ =

M∑

k=1

||v||20,ǫ,Ωk
,

||v||21,ǫ =

M∑

k=1

||v||21,ǫ,Ωk
,

where

||v||20,ǫ,Ωk
= ǫ||q||20,Ωk

+ ||v||20,Ωk
,

||v||21,ǫ,Ωk
= ǫ3|q|21,Ωk

+ ǫ|v|21,Ωk
+ ||v||20,ǫ,Ωk

.

3.1. The least-squares formulation. Define the least-squares functional J :
H1(Ω) × H1

0 (Ω) → R as

J (v) =
1

2
‖Av − f‖2

0 =
1

2
(Av − f , Av − f) . (6)

A necessary condition that u ∈ H1(Ω)×H1
0 (Ω) be a minimizer of the functional J

is that its first variation vanishes at u, i.e.

lim
t→0

d

dt
J (u + tv) = (Au − f , Av) = 0 ∀v ∈ H1(Ω) × H1

0 (Ω).

The variational formulation corresponding to the least-squares functional (6) thus
follows: Find u ∈ H1(Ω) × H1

0 (Ω) such that

B(u,v) = L(v) ∀v ∈ H1(Ω) × H1
0 (Ω), (7)

where the bilinear form B and the linear functional L are defined as

B(u,v) = (Au, Av), (8)

L(v) = (f , Av).

It is clear that the bilinear form is symmetric. In addition, we have the following
coercivity result.
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Theorem 3.2. Assume that
√

ǫ||c||L∞(Ω) ≤ ||b||L∞(Ω). There exists a constant
α > 0 independent of ǫ such that

B(v,v) ≥ α||v||21,ǫ ∀v ∈ H1(Ω) × H1
0 (Ω). (9)

Proof. From definition (8), one gets

B(v,v) = ǫ||q − v′||20 + || − ǫq′ + bv′ + cv||20.

Let σ = min{γ, 1}. Then, we have

B(v,v) ≥ ǫ||q − v′ + σv′||20 − 2σǫ(q − v′, v′) − σ2ǫ||v′||20
≥ −2σǫ(q, v′) + σ(2 − σ)ǫ|v|21

and

B(v,v) ≥ || − ǫq′ + bv′ + cv − σv||20 + 2σ(−ǫq′ + bv′ + cv, v) − σ2||v||20
≥ −2σǫ(q′, v) + σ(b, (v2)′) + 2σ(cv, v) − σ2||v||20
= 2σǫ(q, v′) − σ(b′v, v) + 2σ(cv, v) − σ2||v||20
≥ 2σǫ(q, v′) + σ(2γ − σ)||v||20,

where integration by parts, homogeneous boundary conditions of v, and assumption
(2) are used. It follows that

B(v,v) ≥ 1

2

(
σ(2 − σ)ǫ|v|21 + σ(2γ − σ)||v||20

)
≥ σ2

2
||v||21,ǫ. (10)

On the other hand, using hypothesis of the theorem, (10), and boundedness of
coefficients, we obtain

ǫ||q||20 ≤ 2ǫ||q − v′||20 + 2ǫ||v′||20 ≤ 2B(v,v) +
4

σ2
B(v,v) (11)

and

ǫ3|q|21 ≤ 2ǫ|| − ǫq′ + bv′ + cv||20 + 2ǫ||bv′ + cv||20
≤ 2B(v,v) + 2||b||2L∞(Ω)ǫ|v|21 + 2ǫ||c||2L∞(Ω)||v||20

≤ 2B(v,v) +
4

σ2
||b||2L∞(Ω)B(v,v).

(12)

Finally, (9) follows from (10), (11), and (12) by letting α = σ2

8(1+σ2+||b||2
L∞(Ω)

)
. This

completes the proof.

The following result is an immediate consequence of Theorem 3.2.

Theorem 3.3. Let the hypothesis of Theorem 3.2 hold true. Problem (7) has a
unique solution in H1(Ω) × H1

0 (Ω).

Proof. The result follows from (9), boundedness of the bilinear form B(·, ·) and the
linear functional L(·), and the Lax-Milgram lemma (cf. [8]).

Remark 1. Numerical experiments show that, when ǫ ≪ h, a classic finite element
discretization of the least-squares variational problem (7) is not efficient. See Section
4 for details. Therefore, we consider discontinuous finite element spaces.
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3.2. DG discretization. We next discretize the least-squares formulation (7) with
the DG method [1, 13]. Using integration by parts in each element, we get the

discrete problem: Find uh =

(
ph

uh

)
=

( ∑M
i=1(p

+
i−1N

+
i−1 + p−i N−

i )∑M
j=1(u

+
j−1N

+
j−1 + u−

j N−
j )

)
∈ Vh

such that

Bh(uh,v) = Lh(v) ∀v ∈ Vh, (13)

where p+
i−1, p−i , u+

j−1, and u−
j are coefficients to be determined, 1 ≤ i, j ≤ M , the

bilinear form Bh and the linear functional Lh are defined by

Bh(uh,v) =

M∑

k=1

(Auh, Av)Ωk

+

M∑

k=1

∫ xk

xk−1

(ǫcp′hv + ǫph(cv)′ − bcu′
hv − (bcv)′uh + ǫuhq′ + ǫu′

hq) dx

+

M∑

k=1

[−ǫcp̂hv + bcûhv − ǫûhq]
xk

xk−1

(14)

and

Lh(v) =

M∑

k=1

(f , Av)ΩK
=

M∑

k=1

(f,−ǫq′ + bv′ + cv)Ωk
.

Here, ûh and p̂h are numerical fluxes defined by

p̂h(xk) = λph(x−
k ) + (1 − λ)ph(x+

k ), (15)

ûh(xk) = µuh(x−
k ) + (1 − µ)uh(x+

k ), (16)

where 1/2 ≤ λ, µ ≤ 1 are parameters, and ph(x±
k ) and uh(x±

k ) are the right-hand
limit and left-hand limit of u and p at xk, respectively, k = 0, . . . , M . Note that
Vh is in general not a subspace of H1(Ω) × H1

0 (Ω). Our method is therefore non-
conforming in this sense.

Remark 2. For continuous functions, the numerical fluxes defined in (15)-(16) are
the restrictions of the corresponding functions at associated interelement nodes.
A straightforward calculation shows that Bh(·, ·) coincides with B(·, ·) in space
H1(Ω) × H1

0 (Ω).

Remark 3. A difference between the discontinuous LSFEMs in [2, 3, 11, 15] and the
method developed in this paper is symmetrization of the discrete problem. We note
that, for discontinuous LSFEMs in the addressed papers, standard finite element
discretization is conducted for some special least-squares functionals in discontin-
uous spaces, which leads to symmetric systems of the corresponding functionals.
The method in this paper, on the other hand, discretizes a standard least-squares
functional with the DG method, which is in general nonsymmetric.

The analogs of Theorems 3.2 and 3.3 can be obtained by similar proofs.

Theorem 3.4. Let the hypothesis of Theorem 3.2 hold true. Let λ = µ = 1. There
exists a constant α̂ > 0 independent of ǫ such that

Bh(v,v) ≥ α̂||v||21,ǫ ∀v ∈ Vh. (17)

Theorem 3.5. Let the hypothesis of Theorem 3.4 hold true. Problem (13) has a
unique solution in Vh.
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Figure 1. Numerical solutions by DG discretized LSFEM

Comparing to the classic LSFEM and DG FEM, the DG discretized LSFEM
developed in this paper requires more degrees of freedom (i.e. roughly doubled).
The shortcoming can be easily rectified by a natural discontinous/continuous least-
squares finite element scheme. In particular, we divide the solution domain Ω into
two regions: the regular solution region and the layer region. In the regular solution
region, the exact solution is smooth and the derivatives of the exact solution can be
bounded by a constant that is independent of ǫ, where we may use continuous finite
elements. In the layer region, the exact solution has large derivatives (cf. Lemma
3.1), where discontinuous elements are employed. The combined method maintains
desirable advantages of the discontinuous discretization, which is competitive with
the classic LSFEM and DG method in the sense of degrees of freedom. See also
[2, 3, 19] for details.

4. Numerical experiments. We have computed several test problems to assess
the convergence property and efficiency of the method developed in Section 3. In
this section we present numerical results of a test problem. The stiffness matrices
and load vectors are calculated by symbolic algebra software (MapleTM). High or-
der Gaussian quadrature rules are used to calculate the norms of numerical errors
over the computational regions (including the layers), which hereby causes no com-
petitive extra errors in numerical integration. Linear finite elements are used in a
set of equidistance meshes of decreasing size for all numerical tests.

Example 4.1. Consider the convection-diffusion equation
{

−ǫu′′(x) + e−xu′(x) + u(x) = f in (0, 1),
u(0) = u(1) = 0,

(18)

where ǫ is a parameter to be specified in different tests, and f is selected such that
the solution to (18) is

u(x) = x
(x

2
+ ǫ
)
−
(

1
2 + ǫ

) (
e(x−1)/ǫ − e−1/ǫ

)

1 − e−1/ǫ
. (19)

The solution u features a boundary layer at x = 1.
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Table 1. Numerical errors ||u − uh||1,ǫ by DG discretized LSFEM for dif-
ferent ǫ values

ǫ\ h 1/16 1/32 1/64 1/128 r.o.c.

10−3 7.9515893e-2 5.6767294e-2 4.0393762e-2 2.8390349e-2 0.495281
10−6 7.9599192e-2 5.6274836e-2 3.9782178e-2 2.8125784e-2 0.500287
10−9 7.9598746e-2 5.6274329e-2 3.9781548e-2 2.8124954e-2 0.500298

We first inspect the accuracy and performance of the proposed DG discretized
LSFEM. In Figure 1, we present the computational results of the method with
ǫ = 10−9 and mesh parameters h = 1/32 and 1/128, respectively. Here we pick
λ = µ = 1. The numerical solutions have two traces u+

h and u−
h (one-sided limits)

at each interelement node. The uh plotted are averages of u+
h and u−

h . Figure 1
shows that, even for a quite large mesh size (h = 1/32 comparing to ǫ = 10−9),
the numerical solutions of the proposed method match the analytical solutions very
well. This method hence is very robust and efficient.

In Table 1 we present numerical errors ||u−uh||1,ǫ for ǫ = 10−3, 10−6, and 10−9,
and the rate of convergence (r.o.c.) in each case. Here λ = µ = 1 are used for all
cases. It is observed that the DG discretized LSFEM is numerically independent of
ǫ. In addition, when a singular perturbation occurs, we observe error convergence
order O(h1/2). This implies that the convergence rate of error ||u − uh||1,ǫ is also

uniformly O(h1/2). The convergence rate can be compared with those obtained in
[23] and [27], where uniform error estimates of O(h1/2) are obtained in a similar
ǫ-dependent norm for singularly perturbed elliptic problems by using exponentially
fitted spline elements. This convergence rate is optimal; cf. also [26].

Problem (18) is also solved using classic LSFEM and upwind method for compar-
ison purpose. In Figure 2, we present the LSFEM numerical results in equidistance
meshes with ǫ = 10−3. The continuous least-squares method has a performance de-
pending on the mesh parameter h, which smears out the boundary layer even when
h is very small (i.e. less than ǫ). Therefore, the standard LSFEM is inefficient for
solving singularly perturbed problems. DG discretization contributes essentially to
improving accuracy of the numerical solutions. In Figure 3, we present the results
by plain version upwind finite difference/element schemes (cf. [26]) in equidistance
meshes with ǫ = 10−9, which visually match the boundary layer. It is well known
that, without special treatment, the upwind method does not guarantee convergence
in/near the layer (cf. [26]), which has been observed in our numerical experiments.
Nevertheless, the convergence rates of our method in Table 1 hold in the entire
region including the boundary layer.

5. Conclusions. A singularly perturbed convection-diffusion problem with homo-
geneous Dirichlet boundary conditions is considered in this paper. We have de-
veloped a robust numerical approach based on DG discretization of least-squares
formulation, which needs no special treatment or mesh. The coercivity of the bilin-
ear form has been proven. Numerical examples illustrate efficiency of the method.
This paper provides an alternative to numerical approaches for solving singularly
perturbed convection-diffusion problems.
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