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Abstract. We study a non-isothermal phase separation model of the Penrose-
Fife type. We introduce the notion of a generalized solution and prove its
unique existence.

1. Introduction. We study the following non-isothermal phase separation model
of the Penrose-Fife type (cf. [9]): Problem (P)

et − ∆α̃ = f, e = u+ λ0w, α̃ ∈ α(u) in Ω × (0, T ), (1.1)

wt = ∆{−κ∆w + g(w) + ξ − λ0α̃}, ξ ∈ β(w) in Ω × (0, T ), (1.2)

∇{−κ∆w + g(w) + ξ − λ0α̃} · n = 0 on Γ × (0, T ), (1.3)

w ≥ l0, ∇w · n ≥ 0, (w − l0)∇w · n = 0 on Γ × (0, T ), (1.4)

α̃ = h on Γ × (0, T ), (1.5)

e(0) = e0, w(0) = w0 in Ω. (1.6)

Here, Ω is a bounded domain of RN (N = 1, 2, 3) and Γ := ∂Ω is a smooth
boundary. Also, n is the unit normal on Γ and α and β are maximal monotone
graphs in R × R. Moreover, ν > 0, κ > 0 and λ0 ∈ R are positive constants and g
is a sufficiently smooth function from R into itself.

The original model of our system was proposed by Penrose and Fife in [9] to
describe the non-isothermal spinodal decomposition of a binary alloy composed of
two components. Physically, e, u and w represent respectively, the internal energy,
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the temperature and the order parameter that describes the concentration of one
of the components.

Much research has been done on the system {(1.1), (1, 2)} with various boundary
conditions. For early papers, we refer to the book by Brokate and Sprekels [2].

Usually, the Neumann boundary condition

∇w · n = 0 on Γ × (0, T ) (1.7)

is imposed on the order parameter instead of (1.4).
Regarding temperature, Kubo, Ito and Kenmochi [6] and Ito, Kubo and Ken-

mochi [3] considered respectively, the third boundary condition

∇α̃ · n+ n0α̃ = h on Γ × (0, T ) (1.8)

and the Neumann boundary condition

∇α̃ · n = 0 on Γ × (0, T ). (1.9)

Recently, Ito, Kenmochi and Niezgódka [4] studied the problem with the Signorini
boundary condition (1.4) for the order parameter and the third boundary condition
(1.8) for the temperature. On the other hand, Kumazaki, Ito and Kubo [8] studied
the problem with condition (1.4) for the order parameter and the Dirichlet condition
(1.5) for the temperature, by introducing the viscosity term ν∆wt (ν > 0) in (1.3):

wt = ∆{νwt − κ∆w + · · · }.
In [8], the term ν∆wt plays an essential role in deriving uniform estimates of ap-
proximate solutions.

The present paper continues the study reported in [8] and considers the case
ν = 0.

In order to derive uniform estimates of approximate solutions without the vis-
cosity term ν∆wt, we limit ourselves to a special case of the problem in [8]. In
[8], we considered e = u + λ(w) with a general function λ and the time-dependent
boundary value h(t) for the temperature. Now, however, we set λ(w) = λ0w with
the constant λ0 ∈ R and assume that the boundary value h is independent of time.

Moreover, since we do not have an L2(Ω)-estimate of the temperature u, we have
to employ a result of Kubo and Lu [7] to handle the relation α̃ ∈ α(u) in a general-
ized sense (Theorem 2.1). Then, we introduce the notion of a generalized solution
(Definition 2.2) and show its unique existence (Main Theorem). The uniqueness
together with Theorem 2.1 justify the introduction of the notion of a generalized
solution (Remark 2.3).

The Main Theorem is stated in Section 2 together with a proof of uniqueness,
and is proved in Section 3 by using a uniform estimate (Proposition 3.1) that is
derived in Section 4.

1.1. Notation and assumptions. Throughout this paper, we use the notations
given below.

In general, for a Hilbert space H , we denote by (·, ·)H and || · ||H the inner
product and norm, respectively. H1(Ω) and H1

0 (Ω) are the usual Sobolev spaces.
The Hilbert space structure of H1

0 (Ω) is given by

(z1, z2)H1

0
(Ω) :=

∫

Ω

∇z1 · ∇z2dx, ∀z1, z2 ∈ H1
0 (Ω).

We denote by F and 〈·, ·〉H−1(Ω),H1

0
(Ω) the duality mapping fromH1

0 (Ω) ontoH−1(Ω)

and the duality pairing between H−1(Ω) and H1
0 (Ω), respectively. Then, H−1(Ω)
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is a Hilbert space with the inner product defined as

(z1, z2)H−1(Ω) = 〈z1, F−1z2〉H−1(Ω),H1

0
(Ω) ∀z1, z2 ∈ H−1(Ω).

L2
0(Ω) is a closed subspace of L2(Ω) defined as

L2
0(Ω) := {z ∈ L2(Ω)|

∫

Ω

z = 0}.

Moreover, we denote by π0 the projection operator from L2(Ω) onto L2
0(Ω);

π0[z] := z − 1

|Ω|

∫

Ω

z ∀z ∈ L2(Ω).

V0 := H1(Ω) ∩ L2
0(Ω) and V0 is a Hilbert space with the inner product

(z1, z2)V0
=

∫

Ω

∇z1 · ∇z2 ∀z1, z2 ∈ V0.

Moreover, we denote by F0 the duality mapping from V0 onto its dual V ∗
0 and by

〈·, ·〉V ∗

0
,V0

the duality pairing between V ∗
0 and V0. Then, V ∗

0 is a Hilbert space with
the inner product defined as

(z1, z2)V ∗

0
= 〈z1, F−1

0 z2〉V ∗

0
,V0

∀z1, z2 ∈ V ∗
0 .

Next, we give the assumptions for the prescribed data. First, we note from (1.2)
and (1.3) that

d

dt

∫

Ω

w(t) = 0 a.e. t ∈ (0, T ).

Therefore,
1

|Ω|

∫

Ω

w(t) =
1

|Ω|

∫

Ω

w(0) =: m0 ∀t ∈ [0, T ].

(A1) α and β are maximal monotone graphs in R × R. α̂ and β̂ are proper, l.s.c,

convex functions on R such that ∂α̂ = α and ∂β̂ = β. Assume that there
exists constants σ∗, σ

∗ such that

D(β̂) = [σ∗, σ
∗], −∞ < σ∗ < σ∗ <∞.

(A2) g ∈ C1(R), ĝ
′

= g and

sup
r∈R

|ĝ(r)| + sup
r∈R

|g(r)| + sup
r∈R

|g′

(r)| < +∞.

(A3) f ∈ L2(0, T ;L2(Ω)).

(A4) h ∈ H1(Ω) and there exists h̃ ∈ H1(Ω) such that h ∈ α(h̃) a.e. in Ω.
(A5) m0 ∈ (σ∗, σ

∗).
(A6) e0 ∈ L2(Ω) with α̂(e0 − λ(w0)) ∈ L1(Ω).
(A7) l0 ∈ (σ∗, σ

∗).

(A8) w0 ∈ H1(Ω) with β̂(w0) ∈ L1(Ω) and w0 ≥ l0 a.e. on Γ.

2. Main Theorem. Before stating the main theorem, we prepare the following
theorem.

Theorem 2.1. ( [7, Theorem 2.1]) Under condition (A4), there exists a proper,
l.s.c, convex function ψ : H−1(Ω) → R ∪ {+∞} such that the following holds.
For z ∈ L2(Ω) and z∗ ∈ H−1(Ω), z∗ ∈ ∂ψ(z) if and only if there exists z̃ ∈ L2(Ω)
such that z̃ ∈ α(z)a.e. in Ω, z̃ − h ∈ H1

0 (Ω) and z∗ = F (z̃ − h).

With the help of the convex function ψ, we introduce the notion of a generalized
solution.
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Definition 2.2. A function (e, w) : [0, T ] → H−1(Ω) × V ∗
0 is called a generalized

solution of (P ), if the following items are satisfied.

(S1) e ∈W 1,2(0, T ;H−1(Ω)),
w ∈W 1,2(0, T ;V ∗

0 ) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).
(S2) For a.e. t ∈ (0, T ) the following equation holds:

e
′

(t) + u∗(t) = f(t) + ∆h, u∗(t) ∈ ∂ψ(u(t)),

where u(t) := e(t) − λ0w(t).
(S3) There exists ξ ∈ L2(0, T ;L2(Ω)) such that ξ ∈ β(w) a.e. in Ω × (0, T ) and

F−1
0 w

′

(t) + π0[−κ∆w(t) + ξ(t)] + π0[g(w(t)) − λ0α̃(t)] = 0 a.e. t,

w ≥ l0, ∇w · n ≥ 0, (w − l0)∇w · n = 0 a.e. on Γ × (0, T ),

where α̃(t) := F−1u∗(t) + h.
(S4) e(0) = e0, w(0) = w0.

Now, we state the main theorem.

Main Theorem. There exists a unique generalized solution of (P ).

Remark 2.3. By Theorem 2.1, if u(t) ∈ L2(Ω), (S2) is equivalent to

α̃ ∈ α(u) a.e. Ω × (0, T )

and

〈e′(t), z〉 +

∫

Ω

∇α̃(t) · ∇z = (f(t), z)L2(Ω) ∀z ∈ H1
0 (Ω).

Remark 2.4. The solution of the main theorem is obtained by a viscosity vanishing
of the solution obtained in [8].

2.1. Proof of uniqueness. Let (ei, wi)(i = 1, 2) be two generalized solutions of
(P ) and set W := w1 − w2 and E := e1 − e2. Then, for all z ∈ H1

0 (Ω), we have

〈E(t)
′

, z〉H−1(Ω),H1

0
(Ω) + 〈u∗1(t) − u∗2(t), z〉H−1(Ω),H1

0
(Ω) = 0.

Therefore, we set z = F−1(E(t)) and have

〈E(t)
′

, F−1(E(t))〉 + 〈u∗1(t) − u∗2(t), F
−1(E(t))〉 = 0.

By using the monotonicity of ∂ψ, we obtain

(u∗1(t) − u∗2(t), u1(t) − u2(t))H−1(Ω) ≥ 0.

Therefore,

1

2

d

dt
||E(t)||2H−1(Ω) + λ0(u

∗
1(t) − u∗2(t),W (t))H−1(Ω) ≤ 0. (2.1)

Next, we take the inner product of (S3) and W (t) to derive

1

2

d

dt
||W (t)||2V ∗

0

+ κ||∇W (t)||2L2(Ω) + (g(w1(t)) − g(w2(t)),W (t))L2(Ω)

−λ0(α̃1(t) − α̃2(t),W (t))L2(Ω) ≤ 0. (2.2)

We calculate (2.1) + (2.2) to derive
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1

2

d

dt

(

||E(t)||2H−1(Ω)+ ||W (t)||2V ∗

0

)

+κ||∇W (t)||2L2(Ω)+λ0(u
∗
1(t)−u∗2(t),W (t))H−1(Ω)

≤ |(g(w1(t)) − g(w2(t)),W (t))L2(Ω)| + λ0(α̃1(t) − α̃2(t),W (t))L2(Ω).

Now, by noting that α̃i(t) := F−1u∗i (t) + h, we have

(α̃1(t) − α̃2(t),W (t))L2(Ω) = (u∗1(t) − u∗2(t),W (t))H−1(Ω).

Note that

||z||2L2

0
(Ω) ≤ ||z||V ∗

0
||z||V0

∀z ∈ V0.

Hence, we obtain by the Lipschitz continuity of g (cf. (A2)),

1

2

d

dt

(

||E(t)||2H−1(Ω) + ||W (t)||2V ∗

0

)

+
κ

2
||∇W (t)||2L2(Ω)

≤ C

(

||W (t)||2V ∗

0

+ ||E(t)||2H−1(Ω)

)

.

Here C is a positive constant. By applying Gronwall’s lemma, we have w1 = w2 in
V ∗

0 and e1 = e2 in H−1(Ω).

3. Proof of Main Theorem. First, for each ν ∈ (0, 1), we consider the following
approximate problem: (P )ν

et − ∆α̃ = f, e = u+ λ0w, α̃ ∈ α(u) in Ω × (0, T ),

wt = ∆{νwt − κ∆w + g(w) + ξ − λ0α̃}, ξ ∈ β(w) in Ω × (0, T ),

∇{νwt − κ∆w + g(w) + ξ − λ0α̃} · n = 0 on Γ × (0, T ),

w ≥ l0, ∇w · n ≥ 0, (w − l0)∇w · n = 0 on Γ × (0, T ),

α̃ = h on Γ × (0, T ),

e(0) = e0, w(0) = w0 in Ω.

By using [8], this problem (P )ν has a unique solution (eν , wν) on [0, T ] satisfying
the following properties:

(APS1) eν ∈ W 1,2(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)), wν ∈W 1,2(0, T ;L2(Ω))
∩L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

(APS2) There exists α̃ν ∈ L2(0, T ;H1(Ω)) such that α̃ν ∈ α(eν−λ0wν) a.e. in Ω×
(0, T ), α̃ν = h a.e. on Γ × (0, T ) and for all z ∈ H1

0 (Ω) and a.e. t ∈ (0, T )
the following equality holds:

〈e′ν(t), z〉H−1(Ω),H1

0
(Ω) +

∫

Ω

∇α̃ν(t) · ∇z = (f(t), z)L2(Ω).

(APS3) There exists ξν ∈ L2(0, T ;L2(Ω)) such that ξν ∈ β(wν ) a.e. in Ω × (0, T )
and

(F−1
0 + νI)w

′

ν(t) + π0[−κ∆wν(t) + ξν(t)] + π0[g(wν(t)) − λ0α̃ν(t)] = 0 a.e. t,

wν ≥ l0, ∇wν · n ≥ 0, (wν − l0)∇wν · n = 0 a.e. on Γ × (0, T ).

(APS4) eν(0) = e0, wν(0) = w0.
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Now, we have the following uniform estimate.
Proposition 3.1 There exists a constant K > 0 such that

||w′

ν ||L2(0,T ;V ∗

0
) + ||e′ν ||L2(0,T ;H−1(Ω)) +

√
ν||w′

ν ||L2(0,T ;L2(Ω)) + sup
0≤t≤T

||∇wν (t)||2L2(Ω)

+||α̃ν ||L2(0,T ;H1(Ω)) + sup
0≤t≤T

||β̂(wν(t))||L1(Ω) + ||wν ||L2(0,T ;H2(Ω)) + ||ξν ||L2(0,T ;L2(Ω))

≤ K ∀ν ∈ (0, 1).

This proposition is proved in the next section.
By Proposition 3.1, we can take a sequence {νn} ⊂ (0, 1), which converges to 0

as n→ ∞ such that the following convergences are fulfilled for some (e, w, ξ, α̃):

eνn
→ e

{

weakly in W 1,2(0, T ;H−1(Ω))

weakly-⋆ in L∞(0, T ;H−1(Ω)),

wνn
→ w

{

weakly-⋆ in L∞(0, T ;H1(Ω))

weakly in L2(0, T ;H2(Ω)),

w
′

νn

→ w
′

weakly in L2(0, T ;V ∗
0 ),

π0[wνn
] → π0[w]

{

weakly in W 1,2(0, T ;V ∗
0 )

strongly in C([0, T ];V ∗
0 ),

uνn
→ u weakly-⋆ in L∞(0, T ;H−1(Ω)),

ξνn
→ ξ weakly in L2(0, T ;L2(Ω)),

α̃νn
→ α̃ weakly in L2(0, T ;H1(Ω)).

It is easily seen that (e, w, α̃, ξ) satisfies the following properties:

e
′

(t) + F (α̃(t) − h) = f(t) + ∆h a.e. t,

F−1
0 w

′

(t) + π0[−κ∆w(t) + ξ(t)] + π0[g(w(t)) − λ0α̃(t)] = 0 a.e. t,

ξ ∈ β(w) a.e. in Ω × (0, T ),

w ≥ l0, ∇w · n ≥ 0, (w − l0)∇w · n = 0 a.e. on Γ × (0, T ),

e(0) = e0, w(0) = w0.

To complete the proof, we have to show that F (α̃(t)−h) ∈ ∂ψ(u(t)) for a.e. t. In
(P )νn

, we see that uνn
(t) ∈ L2(Ω). Hence, for a.e. t ∈ (0, T ), (APS2) is equivalent

to the following (cf. Theorem 2.1, Remark 2.3).

e
′

νn

(t) + u∗νn

(t) = f(t) + ∆h, u∗νn

(t) = F (ανn
(t) − h) ∈ ∂ψ(uνn

(t)).

For all v ∈ L2(0, T ;H−1(Ω)), we have

∫ T

0

(f(t) + ∆h− e
′

νn

(t), v(t) − uνn
(t))H−1(Ω)dt ≤

∫ T

0

ψ(v(t))dt −
∫ T

0

ψ(uνn
(t))dt.
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Note that
∫ T

0

(e
′

νn

(t), uνn
(t))H−1(Ω)dt

=

∫ T

0

(e
′

νn

(t), eνn
(t))H−1(Ω)dt− λ0

∫ T

0

(e
′

νn

(t), wνn
(t))H−1(Ω)dt

=

∫ T

0

1

2

d

dt
||eνn

(t)||2H−1(Ω) − λ0

∫ T

0

(e
′

νn

(t), wνn
(t))H−1(Ω)dt

=
1

2

(

||eνn
(T )||2H−1(Ω) − ||eνn

(0)||2H−1(Ω)

)

− λ0

∫ T

0

(e
′

νn

(t), wνn
(t))H−1(Ω)dt.

Now, eνn
(0) = e0 and for all t and z ∈ H1

0 (Ω), we have

〈eνn
(t), z〉H−1(Ω),H1

0
(Ω) =

∫ t

0

〈e′νn

(s), z〉H−1(Ω),H1

0
(Ω)ds+ 〈eνn

(0), z〉H−1(Ω),H1

0
(Ω).

By the convergence of e
′

νn

, we have for all t ∈ [0, T ]

eνn
(t) → e(t) weakly in H−1(Ω).

Moreover, wvn
converges to w strongly in L2(0, T ;H1(Ω)). Therefore,

lim inf
n→∞

∫ T

0

(e
′

νn

(t), uνn
(t))H−1(Ω)dt

≥ 1

2

(

||e(T )||2H−1(Ω) − ||e(0)||2H−1(Ω)

)

− λ0

∫ T

0

(e
′

(t), w(t))H−1(Ω)dt

=

∫ T

0

(e
′

(t), u(t))H−1(Ω)dt.

Hence, by the lower semicontinuity of ψ, we see that
∫ T

0

(f(t) + ∆h− e
′

(t), v(t) − u(t))H−1(Ω)dt ≤
∫ T

0

ψ(v(t))dt −
∫ T

0

ψ(u(t))dt.

Hence, we have u∗(t) := F (α̃(t) − h) ∈ ∂ψ(u(t)) for a.e. t (cf. [1, Prop. 2.16] ).

4. Proof of Proposition 3.1. First, for each ε ∈ (0, 1), we consider the following
problem: (P )ν,ε

et − ∆αε(u) = f, e = u+ λ0w in Ω × (0, T ),

wt = ∆{νwt − κ∆w + g(w) + ξ − λ0αε(u)}, ξ ∈ β(w) in Ω × (0, T ),

∇{νwt − κ∆w + g(w) + ξ − λ0αε(u)} · n = 0 on Γ × (0, T ),

w ≥ l0, ∇w · n ≥ 0, (w − l0)∇w · n = 0 on Γ × (0, T ),

αε(u) = hε on Γ × (0, T ),

e(0) = e0,ε(= u0,ε + λ0w0), w(0) = w0 in Ω.

Here, αε, hε and u0,ε are defined below. We approximate α̂ by α̂ε defined as

α̂ε(r) = inf
z∈R

{

1

2ε
|z − r|2 + α̂(z)

}

+
ε

2
|r|2 ∀r ∈ R

and we set αε =
dα̂ε

dr
= ∂α̂ε. Also, we can approximate the data h, h̃ and u0 by hε,

h̃ε and u0,ε, respectively, which satisfy the following properties (cf. [5]):

hε := h+ ε(h̃+ εh) = αε(h̃ε) → h, h̃ε := h̃+ εh→ h̃ in H1(Ω),
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{u0,ε} ⊂ H1(Ω), u0,ε → u0 in L2(Ω), u0,ε = h̃ε(0) in ∂Ω,

{
∫

Ω

α̂ε(u0,ε)

}

ε

is bounded.

Next, by using [8] again, (P )ν,ε has a unique solution (eν,ε, wν,ε) on [0, T ] satis-
fying the following properties:

(APS1)
′

eν,ε ∈ W 1,2(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), wν,ε ∈
W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)).

(APS2)
′

For a.e. t ∈ (0, T ) the following evolution equation in H−1(Ω) holds:

e
′

ν,ε(t) + F (αε(uν,ε(t)) − hε) = f(t) + ∆hε.

(APS3)
′

There exists ξν,ε ∈ L2(0, T ;L2(Ω)) such that ξν,ε ∈ β(wν,ε) a.e. in Ω×
(0, T ) and

(F−1
0 +νI)w

′

ν,ε(t)+π0[−κ∆wν,ε(t)+ξν,ε(t)]+π0[g(wν,ε(t))−λ0αε(uν,ε(t))] = 0 a.e. t,

wν,ε ≥ l0, ∇wν,ε · n ≥ 0, (wν,ε − l0)∇wν,ε · n = 0 a.e. on Γ × (0, T ).

(APS4)
′

eν,ε(0) = e0,ε, wν,ε(0) = w0.

Now, we take the duality pairing between (APS2)
′

and F−1e
′

ν,ε(t) to derive

||e′ν,ε(t)||2H−1(Ω) +
d

dt
Φε(uν,ε(t)) + λ0(αε(uν,ε(t)), w

′

ν,ε(t))L2(Ω)

= 〈f(t) + ∆hε, F
−1e

′

ν,ε(t)〉 + λ0(hε, w
′

ν,ε(t))L2(Ω). (4.1)

where Φε : H−1(Ω) → R ∪ {+∞} is defined as

Φε(z) :=







∫

Ω

α̂ε(z)dx− (hε, z)L2(Ω), if z ∈ L2(Ω),

+∞, otherwise.

Next, we take the inner product of (APS3)
′

and w
′

ν,ε(t) to derive

||w′

ν,ε(t)||2V ∗

0

+ ν||w′

ν,ε(t)||2L2(Ω) +
d

dt

{

Ψ(π0[wν,ε(t)]) +

∫

Ω

ĝ(wν,ε(t))

}

= λ0(αε(uν,ε(t)), w
′

ν,ε(t))L2(Ω). (4.2)

where Ψ : L2
0(Ω) → R ∪ {+∞} is defined as

Ψ(z0) :=







κ

2
||z0||2V0

+

∫

Ω

β̂(z0 +m0)dx, if z0 ∈ D0

+∞, if z0 ∈ L2
0(Ω) \D0,

where D0 is defined as

D0 := {z0 ∈ V0 | β̂(z0 +m0) ∈ L1(Ω) and z0 +m0 ≥ l0 a.e. on Γ}.
Then, we calculate (4.1) + (4.2) to derive

||w′

ν,ε(t)||2V ∗

0

+ ν||w′

ν,ε(t)||2L2(Ω) + ||e′ν,ε(t)||2H−1(Ω)

+
d

dt

{

Φε(uν,ε(t)) + Ψ(π0[wν,ε(t)]) +

∫

Ω

ĝ(wν,ε(t))

}

= 〈f(t) + ∆hε, F
−1e

′

ν,ε(t)〉 + λ0(hε, w
′

ν,ε(t))L2(Ω).
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Note that

(hε, w
′

ν,ε(t))L2(Ω) = (π0[hε], w
′

ν,ε(t))L2(Ω)

= 〈w′

ν,ε(t), π0[hε]〉V ∗

0
,V0

≤ ||w′

ν,ε(t)||V ∗

0
||∇hε||L2(Ω).

Therefore, there exists a constant C1 > 0 such that

1

2
||w′

ν,ε(t)||2V ∗

0

+ ν||w′

ν,ε(t)||2L2(Ω) +
1

2
||e′ν,ε(t)||2H−1(Ω)

+
d

dt

{

Φε(uν,ε(t)) + Ψ(π0[wν,ε(t)]) +

∫

Ω

ĝ(wν,ε(t))

}

≤ 1

2
||f(t) + ∆hε||2H−1(Ω) +

λ2
0

2
||∇hε||2L2(Ω)

≤ C1(||f(t)||2L2(Ω) + ||∇hε||2L2(Ω)) a.e. t ∈ (0, T ).

Then, by integrating over [0,t], we have

1

2

∫ t

0

||e′ν,ε(s)||2H−1(Ω)ds+ ν

∫ t

0

||w′

ν,ε(s)||2L2(Ω)ds+
1

2

∫ t

0

||w′

ν,ε(s)||2V ∗

0

ds

+Φε(uν,ε(t)) + Ψ(π0[wν,ε(t)]) +

∫

Ω

ĝ(wν,ε(t))

≤ Φε(uν,ε(0)) + Ψ(π0[wν,ε(0)])

+

∫

Ω

ĝ(wν,ε(0)) + C1||f ||2L2(0,T ;L2(Ω)) + C1T ||∇hε||2L2(Ω).

By noting that there exists a constant M > 0 such that for all ε ∈ (0, 1) and r ∈ R,

α̂ε(r) ≥ −M(|r| + 1)

and that hε = αε(h̃ε), we have

Φε(z) =

∫

Ω

α̂ε(z)dx− (hε, z) ≥
∫

Ω

α̂ε(h̃ε)dx− (hε, h̃ε)

≥
∫

Ω

−M(|h̃ε| + 1)dx− (hε, h̃ε) ≥ −M ′

for a constant M
′

> 0 and for all z ∈ L2(Ω). Therefore, we see that there exists a
positive constant K such that

||e′ν,ε||L2(0,T ;H−1(Ω)) + ||w′

ν,ε||L2(0,T ;V ∗

0
) +

√
ν||w′

ν,ε||L2(0,T ;L2(Ω))+

+||αε(uν,ε)||L2(0,T ;H1(Ω)) + sup
0≤t≤T

||∇wν,ε(t)||L2(Ω) + sup
0≤t≤T

||β̂(wν,ε(t))||L1(Ω) ≤ K.

Here, the estimate of ||αε(uν,ε)||L2(0,T ;H1(Ω)) follows from (cf. (APS2)
′

)

αε(uν,ε(t)) = F−1(f(t) + ∆hε − e
′

ν,ε) + hε.

Moreover, we note the following result.

Lemma 4.1. (cf. [4]) Let f̄ ∈ L2(Ω) and set z := z0 + m0. Then, π0[f̄ ] ∈
∂L2

0
(Ω)Ψ(z0) if and only if z0 ∈ H2(Ω) and there exists a function ξ := ξf̄ ∈ L2(Ω)

such that

π0[−κ∆z + ξ] = π0[f̄ ] a.e. in Ω,

ξ ∈ β(z) a.e. in Ω,
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z ≥ l0, ∇z · n ≥ 0, (z − l0)∇z · n = 0 a.e. on Γ.

Moreover, there exists a constant K1 > 0 such that

||z||H2(Ω) + ||ξ||L2(Ω) ≤ K1(||f̄ ||L2(Ω) + 1).

From this lemma and (APS3)
′

, the estimates of ||wν,ε||L2(0,T ;H2(Ω)) and
||ξν,ε||L2(0,T ;L2(Ω)) follows. Therefore, by letting ε → 0, we obtain Proposition
3.1.
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[4] A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with
Signorini boundary condition, Adv. Math. Sci. Appl., 17(2007), 337–356.

[5] M. Kubo, Well-posedness of initial boundary value problem of degenerate parabolic equations,
Nonlinear Analysis, 63 (2005), e2629–e2637.

[6] M. Kubo, A. Ito and N. Kenmochi, Non-isothermal phase separation models: Weak well-
posedness and global estimates, in: N. Kenmochi (Ed.), Free Boundary Problems: Theory
and Applications II (Chiba, 1999), GAKUTO Int. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo,
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