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ABSTRACT. We study a non-isothermal phase separation model of the Penrose-
Fife type. We introduce the notion of a generalized solution and prove its
unique existence.

1. Introduction. We study the following non-isothermal phase separation model
of the Penrose-Fife type (cf. [9]): Problem (P)

e, —Aa=f, e=u+w, &€ alu) inQx(0,T), (1.1

wy = A{—rAw + g(w) + £ — Xoa}, £ € B(w) in Qx(0,T), (1.2

V{—rAw+ glw) +& —Xo@} -n=0 onl x(0,T), (1.3

w>lg, Vw-n>0, (w—1p)Vw-n=0 onT x(0,T), (14

a=h onT x(0,7), (1.5

e(0) = ep, w(0) =wp in Q. (1.6

Here, ) is a bounded domain of RN(N = 1,2,3) and I := 0Q is a smooth

boundary. Also, n is the unit normal on I' and « and (3 are maximal monotone

graphs in R x R. Moreover, v > 0,k > 0 and Ay € R are positive constants and g
is a sufficiently smooth function from R into itself.

The original model of our system was proposed by Penrose and Fife in [9] to

describe the non-isothermal spinodal decomposition of a binary alloy composed of
two components. Physically, e, u and w represent respectively, the internal energy,
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the temperature and the order parameter that describes the concentration of one
of the components.
Much research has been done on the system {(1.1), (1, 2)} with various boundary
conditions. For early papers, we refer to the book by Brokate and Sprekels [2].
Usually, the Neumann boundary condition

Vw-n=0 onT x(0,T) (1.7)
is imposed on the order parameter instead of (1.4).

Regarding temperature, Kubo, Ito and Kenmochi [6] and Ito, Kubo and Ken-
mochi [3] considered respectively, the third boundary condition

Va-n+npad=h onl x (0,7) (1.8)
and the Neumann boundary condition
Va-n=0 onT x (0,7T). (1.9)

Recently, Ito, Kenmochi and Niezgddka [4] studied the problem with the Signorini
boundary condition (1.4) for the order parameter and the third boundary condition
(1.8) for the temperature. On the other hand, Kumazaki, Ito and Kubo [8] studied
the problem with condition (1.4) for the order parameter and the Dirichlet condition
(1.5) for the temperature, by introducing the viscosity term vAw, (v > 0) in (1.3):

we = A{vwy — kAw + -+ }.

In [8], the term rAw; plays an essential role in deriving uniform estimates of ap-
proximate solutions.

The present paper continues the study reported in [8] and considers the case
v=0.

In order to derive uniform estimates of approximate solutions without the vis-
cosity term vAw,;, we limit ourselves to a special case of the problem in [8]. In
[8], we considered e = u + A(w) with a general function A and the time-dependent
boundary value h(t) for the temperature. Now, however, we set A\(w) = Aw with
the constant A\g € R and assume that the boundary value h is independent of time.

Moreover, since we do not have an L?({2)-estimate of the temperature u, we have
to employ a result of Kubo and Lu [7] to handle the relation & € a(u) in a general-
ized sense (Theorem 2.1). Then, we introduce the notion of a generalized solution
(Definition 2.2) and show its unique existence (Main Theorem). The uniqueness
together with Theorem 2.1 justify the introduction of the notion of a generalized
solution (Remark 2.3).

The Main Theorem is stated in Section 2 together with a proof of uniqueness,
and is proved in Section 3 by using a uniform estimate (Proposition 3.1) that is
derived in Section 4.

1.1. Notation and assumptions. Throughout this paper, we use the notations
given below.

In general, for a Hilbert space H, we denote by (-,-)y and || - || the inner
product and norm, respectively. H'(Q) and Hg () are the usual Sobolev spaces.
The Hilbert space structure of H}(f2) is given by

(21, 22) 1 (o) == / Vz1 - Vzodz, V21, 20 € Hy(Q).
Q

We denote by I and (-, *) g1 (q), 1 () the duality mapping from HY(Q) onto H~1(Q)
and the duality pairing between H~1(Q) and H} (), respectively. Then, H ()
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is a Hilbert space with the inner product defined as
(21, 22) -1 = (21, F ' 22 1), mi) V21,22 € HH(Q).
L3(f2) is a closed subspace of L?(€) defined as

L3(Q) = {z € L*(D)] i 0}.

Moreover, we denote by 7y the projection operator from L?(£2) onto L3(£2);
1
€ Ja
Vo := HY(Q) N L3(Q) and V; is a Hilbert space with the inner product

z Vze L*(Q).

molz] =2

(21,22)\/0 = / Vz1-Vzy VZl,ZQ e W.
Q

Moreover, we denote by Fy the duality mapping from V4 onto its dual Vi and by
(-, '>Vo*xV0 the duality pairing between V" and Vj. Then, V' is a Hilbert space with
the inner product defined as

(21, 22)vp = (21, Fy "22)ve vy Vo1, 22 € V5

Next, we give the assumptions for the prescribed data. First, we note from (1.2)

and (1.3) that
d
pr Qw(t) =0 ae. t€(0,7).
Therefore,
1 ) 1
— | w(t) = —
2] Jo 12 Jo
(Al) « and § are maximal monotone graphs in R x R. & and [ are proper, ls.c,
convex functions on R such that 0& = « and 95 = 3. Assume that there
exists constants o, c* such that

w(0) =:mg ¥Vt e [0,T].

D(B) = [o4,0%], —00 < 0, < 0F < 0.
(A2) g€ C'(R), §' = g and

sup |§(r)| + sup [g(r)| + sup [g ()] < +oo.
reR reR reR

)
)
) mg € (04,0%).
) ep € L2(Q) with d(eo — )\(’wo)) S Ll(Q)
)

2. Main Theorem. Before stating the main theorem, we prepare the following
theorem.

Theorem 2.1. ( [7, Theorem 2.1]) Under condition (A4), there exists a proper,
Ls.c, convex function ¢ : H=1(Q2) — RU {+oc} such that the following holds.

For z € L*(Q) and 2* € H=Y(Q),z* € 0v(2) if and only if there exists Z € L*(Q)
such that z € a(z)a.e. in Q2 —h € H}(Q) and 2* = F(Z — h).

With the help of the convex function v, we introduce the notion of a generalized
solution.



GENERALIZED SOLUTIONS OF A PHASE SEPARATION MODEL 479

Definition 2.2. A function (e,w) : [0,T] — HY(Q) x V' is called a generalized
solution of (P), if the following items are satisfied.

(S1) e € Wh2(0,T5 H-1(Q)),
w e WH2(0,T; V) 0 L (0, T; HY(Q)) N L0, T; H2(Q)).
(S2) For a.e. t € (0,T) the following equation holds:
¢ (1) +ut(t) = f(t) + b, u” () € D(u(t)),
where u(t) := e(t) — Mow(t).

(S3) There exists £ € L2(0,T; L?(Q2)) such that £ € B(w) a.e. in Q x (0,T) and
Fy hw' (8) + mo[—rAw(t) + £(1)] + mo[g(w(t)) — Ao@(t)] =0 ace. t,
w>1p, Vw-n>0, (w=1I0p)Vw-n=0 ae onl x (0,7),

where a(t) := F~1u*(t) + h.
(S4) €(0) = eg, w(0) = wo.

Now, we state the main theorem.
Main Theorem. There exists a unique generalized solution of (P).
Remark 2.3. By Theorem 2.1, if u(t) € L?(Q), (S2) is equivalent to
a € au) ae Qx(0,T)
and
(e (t),2) +/ Va(t)-Vz = (f(t),2)2@) Yz € Hy(9).
Q

Remark 2.4. The solution of the main theorem is obtained by a viscosity vanishing
of the solution obtained in [8].

2.1. Proof of uniqueness. Let (e;,w;)(i = 1,2) be two generalized solutions of
(P) and set W := w1 —wq and E := e — e3. Then, for all z € H}(Q), we have

/

(E(®) ,2)m-1(0),m11 Q) T (Ui (t) —uz(t), 2) g-1(),m (2) =0

Therefore, we set z = F~1(E(t)) and have

’

(B(t) , FTHE®))) + (ui(t) —u3(t), F~H(E(1)) = 0.
By using the monotonicity of 0, we obtain

(ui(t) — uz(t), ua(t) — ua(t)) g-1() = 0.
Therefore,

1 d * *
§E||E(t)||f{71(ﬂ) + Xo(ui(t) —us(t), W(t) g-10) < 0. (2.1)
Next, we take the inner product of (S3) and W (t) to derive

1d

5 dtIIW(t)II%/; + Kl [VW (@)[[Z2(0) + (9(wi(t) = glwa(?)), W (#)) 20

—Xo(a(t) — as(t), W(t))Lz(Q) <0. (2.2)
We calculate (2.1) 4+ (2.2) to derive
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|~

S (BB HIW I ) AT O 0y + ol ) =050, W ()0
< |(g(wi(t)) — glwa(t)), W(t)) L2 ()| + Ao(a1(t) — aa(t), W(t))L2(q)-

Now, by noting that &;(t) := F~u}(t) + h, we have

(G1(t) — a2(t), W(t) r2(0) = (ui(t) — u3(t), W(t)) g-1(q)-

Note that

12122y < llzllvgllzllve V2 € V.

Hence, we obtain by the Lipschitz continuity of g (cf. (A2)),

1d K
355 (1B @+ IWOIR; ) + SIFW Ol

< c(||w<t>||2v; i ||E<t>||%11<m>-

Here C is a positive constant. By applying Gronwall’s lemma, we have w; = wy in
Vg and e; = eg in H-H(Q).

3. Proof of Main Theorem. First, for each v € (0, 1), we consider the following
approximate problem: (P),

e, —Aa=f, e=u+w, &€ a(u) inQx(0,T),
wy = AMvw, — kAw + g(w) + & — Xoa}, £ € fw) in Qx(0,T),
V{vws — kAw + g(w) + & — Xpa}-n=0 onT x (0,7T),
w>1y, Vw-n>0, (w—10)Vw-n=0 onT x(0,7T),
&=h onT x (0,7),
e(0) = ep, w(0) =wp in Q.

By using [8], this problem (P), has a unique solution (e,,w, ) on [0, T] satisfying
the following properties:

(APS1) e, € WH2(0,T; H=1(Q)) N L®(0,T; LX), w, € W2(0,T; L2(Q))
AL>(0,T; H'()) N L2(0,T; H%(5)).
)

)
(APS2) There exists &, € L?(0,T; H*(Q)) such that &, € a(e,—Aow,) a.e. in Qx
(0,T), @& =h ae onl x (0,7) and for all z € H}(Q) and a.e. t € (0,T)
the following equality holds:

’

(en()s 2) 1 (),H() T /Q Vay(t) - Vz=(f(t),2)r2(0)

(APS3) There exists &, € L?(0,T; L*(Q)) such that &, € B(w,) a.e. in Q x (0,7T)
and

(Fy ' + vl)w, (t) + mo[—kAw, () + &,(1)] + molg(wy (1)) — Aodn (£)] =0 ace. t,
wy, >y, Vw, -n >0, (w, —lp)Vw, -n=0 a.e. onT x (0,7).

(APS4) e,(0) = ep, w,(0) = wo.
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Now, we have the following uniform estimate.
Proposition 3.1 There exists a constant K > 0 such that

[w, || L2(0,13v) + leullz20,rm-1 ) + VVIlw,llL20,1:0200) + OiltlETHun(t)H%?(Q)

Hlaw | L2 0,15m1 (92)) +Oiltl£>T 113w, (t))] |1 @) F llwul| 20,752 Q) + 16| L200,7522(0))

<K VYvre(0,1).

This proposition is proved in the next section.
By Proposition 3.1, we can take a sequence {v,,} C (0,1), which converges to 0
as n — oo such that the following convergences are fulfilled for some (e, w, &, &):

. . weakly in W12(0,T; H=1(Q))
v —
" weakly-* in L>(0,T; H~1()),

weakly-x in L°°(0,T; H*(Q2))
Wy, — W
" weakly in L2(0,T; H?()),

w, —w weakly in L2(0,T; Vg,

Un

weakly in W12(0,T; V)

WO[wun] - 7T0[’LU {Strongly n C([O,T],‘/O*)u

u,, — u weakly-x in L>(0,T; H *(Q)),
&, — & weakly in L?(0,T; L*(Q)),
&, — & weakly in L?(0,T; H'(Q)).

It is easily seen that (e, w, &, &) satisfies the following properties:

e (t)+ F(a(t)—h) = f(t)+ Ah ae.t,
Fylw' (t) 4 mo[—rAw(t) + £(8)] + molg(w(t)) — Ao@(t)] =0 ace. t,
e pf(w) ae. inQx(0,T),
w>1ly, Vw-n>0, (w—1Ip)Vw-n=0 ae. onI x(0,7),

e(0) = ep, w(0) = wo.

To complete the proof, we have to show that F(&(t)—h) € 0¢(u(t)) for a.e. t. In
(P),, , we see that u,, (t) € L*(Q). Hence, for a.e. t € (0,T), (APS2) is equivalent
to the following (cf. Theorem 2.1, Remark 2.3).

€, (0) +uy, (8) = f(O) + b, uf, (8) = Flaw, (1) = h) € 9ib(uy, (1).
For all v € L*(0,T; H~1()), we have

T , T T
/ (F(8) + Ak — ¢l (£),0(8) — g, (8)) sr-s(ydt < / B(o(t))dt / Oy, (1)t
0 0 0



482 KOTA KUMAZAKI, AKIO ITO AND MASAHIRO KUBO
Note that

T ’
JRCRCERCI PR
T ’ T !
— [ (e en st = [ (€, 00, O
0 0

/T1 d ) T,
T [ / (€ ()10, () 11
, 2dt H-1(Q) o H=1(Q)

1 T,
= 5( lev, (T |3-1(0) = llew, (@H%{l(g)) - )\0/0 (ey,, (t); Wy, (8) -1 (0 dt.

Now, e, (0) = eg and for all t and 2z € H}(Q), we have

t
(ev, (t>aZ>H*1(Q),H§(Q) = / <eun (5)7Z>H*1(Q),H§(Q)d5 + (v, (O)az>H*1(Q),H§(Q)-
0
By the convergence of e;,n, we have for all ¢ € [0, T
ey, (1) — e(t) weakly in H™(Q).

Moreover, w,, converges to w strongly in L2(0,T; H'(£2)). Therefore,

T
lim inf / (en, (£), Un, (1)) -1 () dt
0

n—oo

T
3 (1T B0y~ OBy ) =0 [ (€ 0 w0 e

Y

T !
= [ € @0

Hence, by the lower semicontinuity of ¢, we see that

T , T T
| 0@+ 80— 0.00) ~ w)u-sdr < [ vyt~ [ vute
0 0 0
Hence, we have u*(t) := F(a(t) — h) € 0y (u(t)) for a.e. t (cf. [1, Prop. 2.16] ).

4. Proof of Proposition 3.1. First, for each ¢ € (0, 1), we consider the following
problem: (P), .

et — Aa(u) = f, e=u+w inQ x(0,7),

wy = Avwy — kAw + g(w) + & — Mas(uw)}, £ € f(w) inQx(0,T),
V{vw; — kAw + g(w) + £ — Mpaes(u)} -n=0 onT x (0,7),
w>1p, Vw-n>0, (w=1I0p)Vw-n=0 onT x (0,7),
ac(u)=h, onl x(0,T),

e(0) = e,e(= up,e + Aowp), w(0) =wo in Q.

Here, ac, h. and ug . are defined below. We approximate & by &. defined as
ae(r) = 21212{2—32 —r? —l—d(z)} + %|r|2 VreR

da -
and we set a, = 0 © = 0d.. Also, we can approximate the data h, h and ug by he,
r

he and Ug,e, respectively, which satisfy the following properties (cf. [5]):

he :=h+e(h+¢eh) =ac(he) — h, he :== h+ech — h in H(Q),
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{upe} C HY(Q), Ug,e — Up in L*(Q), Uge = BS(O) in 092, {/ dg(uo)a)} is bounded.
Q

€

Next, by using [8] again, (P),.. has a unique solution (e, ., w, ) on [0,T] satis-
fying the following properties:

(APS1) e,. € WY2(0,T; H-'(Q)) N L>®(0,T; L2(Q)) N L2(0, T; H'(R)), w,. €
Wh2(0,T; L*(Q)) N L>=(0,T; H'(Q)) N L*(0, T; H(2)).
(APS2)" For a.e. t € (0,T) the following evolution equation in H~'(€2) holds:
e;,s(t) + F(as(“ma(t)) —he) = f(t) + Ahe.

(APS3) There exists &, € L2(0,T; L2(€)) such that &, € B(w,.) a.e. in Qx
(0,T) and

(Fo_l+Vf)w;,7€(t)+7T0[—HAwu,a(t)+§u,a(t)]+7ro[9(wu,a(t))_)‘Oaa(uV,a(t))] =0a.e.t,
Wye > o, Vwye-n >0, (wye —1lp)Vwye-n=0 ae. onI x(0,7T).
(APS4)" e,.(0) = eg., w,(0) = wp.
Now, we take the duality pairing between (APS2) and F 716:48 (t) to derive

’

e 1By 5= (ot (1) + o (1), . ()0
= (f(t) + Dhe, F e, (8) + Nolhe, w, o (1)) 12(c) - (4.1)

where @, : H71(Q) — RU {+0o0} is defined as

/ng(z)dx — (he, 2)r2(0, if 2 € L*(Q),

400, otherwise.

D.(z) =

Next, we take the inner product of (APS3)" and w;,ﬁ (t) to derive

(013 + vl (O] 220y + %{wo[wymn + / g<wy,5<t>>}

= Mo (e (e (1)), w0, (£)) 12 (0)- (4.2)
where U : L2(Q) — R U {+o0} is defined as

K - .

Sllalft, + [ Bleo-+mo)ds, it € Dy
Q

400, ifzg€ Lg(Q) \ Do,

U(zp) :=

where Dy is defined as
Dy :={2 €V | B(zo +mg) € LY(Q) and zg +mg > lo a.e. on T'}.
Then, we calculate (4.1) + (4.2) to derive
lw, e O+ Vl|w,, ()] [720) + ey, Ol|7-1 (0

a {(bs(uu,s(t)) 0 (ol (1)) + g(wu,s@))}

E Q
= (f(t) + Ahe, F e, (8)) + Ao(he, wy, () £2(0)-

+
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Note that
(heyw, ()20 = (molhe],w, . (t) 12y
= (w,.(t), moh ]>v0*,vo
< lw, @)y,
Therefore, there exists a constant C'; > 0 such that
Sl (Ol + el Ol + gl Ol 20

+%{@wwan+wwwwAwD+/

(o)}
Q

1 2 A% 2

§||f(t) + Ahellf-1(q) + 7||Vhs||L2(Q)

< CilllfOl172q) + IVhellf2(q))  ae. t€(0,T).

Then, by integrating over [0,t], we have

5 [ et [ 106 s + 5 [T

0 e (1)) + W(molwn e (1)]) + / §(wne(1))
D, (UV,E (0)) + \I/(TFO [wv,s (0)])
4 /Q 3(w0e(0)) + Cll 1oz + CITIIVAe] 2o

By noting that there exists a constant M > 0 such that for all e € (0,1) and r € R,
be(r) =2 —=M(|r| +1)
and that h. = a. (iLE), we have

D.(2) = /Qozg(z)dx—(ha,z)z/ﬂda(ﬁg)dx—(ha,ﬁa)

2/—M(|l~za|—|—1)d:v—(h€,ﬁa)2—M/
Q

IN

IN

for a constant M' > 0 and for all z € L2(2). Therefore, we see that there exists a
positive constant K such that

! ! ’
lley ellrz(o,mm-1 ) + |lwy cllp20,7:vp) + \/;||wv,s||L2(0,T;L2(Q))+

Hlee (uve)ll 20,51 () + sup [[Vw, e (t)]|z2() + sup ||B(wv,s(t))||L1(Q) < K.
0<t<T 0<t<T

Here, the estimate of || (uy,c)|| 20,711 (0)) follows from (cf. (APS2)")
e (upe(t)) = FTHf(t) + Ahe —€,,) + he.

Moreover, we note the following result.

Lemma 4.1. (c¢f. [4]) Let f € L*(Q) and set z := 2y + mo. Then, mo[f] €
Ir2()¥(20) if and only if zo € H?(Q) and there exists a function & := &5 € L*(2)
such that

mo[—kAz + & =mo[f] a.e in

£ef(z) ae in Q,
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z2>1ly, Vz2-n>0, (z—10p)Vz-n=0 a.e on T.

Moreover, there exists a constant K1 > 0 such that

12l 20 + 1€l 22(0) < K1(||fllr2) + 1)

From this lemma and (APS3), the estimates of llwy.ellL20,7;m2(0)) and
[[€v.ell22(0,12(q2)) follows. Therefore, by letting ¢ — 0, we obtain Proposition
3.1.

i
2
3
4
5

[6

REFERENCES

| H. Brézis, Opérateurs Mazimauz Monotones et Semi-Groupes de Contractions dans les Es-
paces de Hilbert, North-Holland, Amsterdam, London, New York, 1973.

| M. Brokate and J. Sprekels, “Hysteresis and Phase Transitions,” Applied Mathematical Sci-
ences 121, Springer-Verlag, New York, 1996.

| A. Ito, N. Kenmochi and M. Kubo, Non-isothermal phase transition models with Neumann
boundary conditions, Nonlinear analysis, 53 (2003), 977-996.

| A. Ito, N. Kenmochi and M. Niezgédka, Phase separation model of Penrose-Fife type with
Signorini boundary condition, Adv. Math. Sci. Appl., 17(2007), 337-356.

| M. Kubo, Well-posedness of initial boundary value problem of degenerate parabolic equations,
Nonlinear Analysis, 63 (2005), €2629-€2637.

| M. Kubo, A. Ito and N. Kenmochi, Non-isothermal phase separation models: Weak well-
posedness and global estimates, in: N. Kenmochi (Ed.), Free Boundary Problems: Theory
and Applications II (Chiba, 1999), GAKUTO Int. Ser. Math. Sci. Appl., Gakkotosho, Tokyo,
14 (2000), 311-323.

] M. Kubo and Q. Lu, Evolution equation for nonlinear degenerate parabolic PDE, Nonlinear
Analysis, 64 (2006), 1849-1859.

| K. Kumazaki, A. Ito and M. Kubo, A non-isothermal phase separation with constraints and
Dirichlet boundary condition for temperature, to appear in Nonlinear Analysis.

| O. Penrose and P.C. Fife, Thermodynamically consistent models of phase-field type for the
kinetics of phase transitions, Physica D 43 (1990), 44-62.

Received July 2008; revised April 2009.

E-mail address: k.kumazaki@gmail.com
E-mail address: aito@hiro.kindai.ac.jp
E-mail address: kubo.masahiro@nitech.ac.jp


http://www.ams.org/mathscinet-getitem?mr=MR0348562&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1411908&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1978030&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2337382&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1794361&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2197364&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1060043&return=pdf

	1. Introduction
	1.1. Notation and assumptions

	2. Main Theorem
	2.1. Proof of uniqueness

	3. Proof of Main Theorem 
	4. Proof of Proposition 3.1
	REFERENCES

