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Abstract. Nonoscillatory solutions of a general class of second order func-
tional neutral differential equations of the form
(

r (t) (x (t) + p (t) x (t − τ))′
)

′

+ f (t, x (σ1 (t)) , x (σ2 (t)) , . . . , x (σn (t))) = 0

have been classified in accordance with their asymptotic behavior.

1. Introduction. This paper is a continuation of our recent research in [3, 4] re-
garding asymptotic behavior of nonoscillatory solutions of certain classes of nonlin-
ear neutral differential equations. We are concerned with a second order nonlinear
neutral differential equation
(

r (t) (x (t) + p (t)x (t − τ))
′
)′

+ f (t, x (σ1 (t)) , x (σ2 (t)) , . . . , x (σn (t))) = 0, (1)

where t ∈ I
def
= [t0, +∞) , t0 ∈ R, τ > 0, r ∈ C1 (I, (0, +∞)) , p, σi ∈ C (I, R)

for all i ∈ ∆
def
= {1, 2, . . . , n} , and f ∈ C (I × R

n, R) . By a solution of (1) we
mean a continuous function x (t) , defined on some interval [tx, Tx) , such that
r (t) (x (t) + p (t)x (t − τ))

′

is continuously differentiable and x (t) satisfies Eq. (1)
for all t ∈ [tx, Tx) . To concentrate attention only on the asymptotic behavior of
solutions, we tacitly assume that solutions of Eq. (1) always exist and can be
indefinitely continued to the right beyond t0.

In addition to numerous papers where oscillatory behavior of solutions for various
classes of neutral differential equations has been considered, many authors were
interested in existence of nonoscillatory solutions, in particular positive solutions, as
well as in the asymptotic behavior of nonoscillatory solutions and their classification,
see, for instance, [1] - [15] and the references cited therein. For a second order neutral
differential equation

(x (t) + px (t − τ))′′ + f (t, x (t) , x′ (t)) = 0,
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Džurina [1] established conditions under which all nonoscillatory solutions behave
like linear functions at + b as t → +∞ for some a, b ∈ R. Further results in this
direction were obtained by the authors for a second order equation

(x (t) + p(t)x (t − τ))
′′

+ f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0

in [3], and for an n-th order equation

(x (t) + p (t)x (t − τ))
(n)

+ f (t, x (t) , x (ρ (t)) , x′ (t) , x′ (σ (t))) = 0

in [4]. Related theorems for higher order nonlinear neutral differential equations

dn

dtn
[x(t) + λx(t − τ)] + σF (t, x(g(t))) = 0

and
dn

dtn
[x(t) − h(t)x(τ(t))] + f(t, x(g(t))) = 0

can be found, respectively, in the papers by M. Naito [11] and Y. Naito [12].
Classification of nonoscillatory solutions for second order neutral differential

equations
(x (t) − p(t)x (t − τ))′′ + f (t, x (t − δ)) = 0

and
(

r (t) (x (t) − p (t)x (t − τ))
′
)′

+ f (t, x (t − δ)) = 0 (2)

was suggested in the papers by Lu [10] and Li [7].
For higher order neutral differential equations, Kong et al. [5] proposed classifi-

cation of nonoscillatory solutions of an odd order linear neutral differential equation

(x(t) − x(t − τ))(n) + p(t)x(t − σ) = 0

and established conditions for the existence of each type of nonoscillatory solutions.
Recently, Zhou [15] and Li and Fei [9] addressed existence of positive solutions of

(

r(t) (x (t) − p(t)x (t − τ))
(n−1)

)

′

+ f (t, x (t − τ)) = 0

and
(

r(t)x(n−1) (t)
)

′

+ f (t, x (t − τ)) = 0.

Ouyang et al. [13] discussed existence and classification of positive solutions of
(

r(t)

(

x(t) −

m
∑

i=1

Pi(t)x(t − τi)
(n−1)

))

′

+ f (t, x (t − σ1) , . . . , x (t − σl)) = 0,

whereas Li [8] explored asymptotic behavior of nonoscillatory solutions of
(

x(t) −

m
∑

i=1

Pi(t)x(t − τi)

)(n)

+ δ

m
∑

j=1

Qj(t)fj (x(hj(t))) = 0.

Finally, we mention that sufficient conditions for existence of solutions with the
“weak” properties A and B for a neutral differential equation

(x (t) + µ(t)x (ρ (t)))(n) + f (t, x (τ1 (t)) , x (τ2 (t)) , . . . , x (τm (t))) = 0

have been suggested by Grammatikopoulos and Koplatadze [2].
In what follows, it is supposed that the following conditions hold:

(A1) for all t ≥ t0 and i ∈ ∆, σi (t) ≤ t and limt→+∞ σi (t) = +∞;
(A2) 0 ≤ p (t) ≤ p∗ < 1 and limt→+∞ p (t) = p0;
(A3) x1f (t, x1, x2, . . . , xn) > 0 for x1xi > 0, i ∈ ∆.
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Asymptotic behavior of nonoscillatory solutions to (1) differs depending on whether

the improper integral
∫ +∞

t0
1/ (r (u)) du converges or not. Therefore, we consider

separately two cases when
∫ +∞

t0

1

r (u)
du < +∞ (3)

and
∫ +∞

t0

1

r (u)
du = +∞. (4)

Developing and refining the ideas used by Li [7] for Eq. (2), in this paper we
only discuss classification of nonoscillatory solutions of (1). In contrast to the cited
paper, we remove a restrictive monotonicity condition on the nonlinearity,

f(t, x1) ≥ f(t, x2) for x1 ≥ x2 > 0 or x1 ≤ x2 < 0, t ≥ t0,

imposed by Li in addition to the standard sign condition (A3). Furthermore, our
proofs of the two classification results are based on four lemmas and thus are sim-
pler compared to more intricate proofs in Li’s paper [7] relying on seven auxiliary
lemmas. Main theorems are illustrated with examples of neutral equations that
possess exact solutions with certain asymptotic behavior. Conditions that guaran-
tee existence of solutions which belong to the classes considered in the sequel will
form the subject of one of the forthcoming publications.

2. Preliminary lemma. The following auxiliary result helps us to study the as-
ymptotic behavior of nonoscillatory solutions of Eq. (1).

Lemma 2.1 (cf. [3, Lemma 1]). Let x (t) > 0 (or x (t) < 0) eventually, τ > 0, and
let p (t) satisfy (A2). For t ≥ t0, define

z (t) = x (t) + p (t)x (t − τ) . (5)

If there exists a finite limit limt→+∞ z (t) = c, then

lim
t→+∞

x (t) =
c

1 + p0
. (6)

Proof. Let x (t) be eventually positive. Then (5) implies that c ≥ 0 and, by (6),
one has

lim inf
t→+∞

x (t) ≤
c

1 + p0
≤ lim sup

t→+∞

x (t) .

Suppose that there exist α1, α2 ≥ 0 and two sequences µn, νn diverging to +∞ such
that

lim sup
t→+∞

x (t) = lim
t→+∞

x (µn) =
c + α1

1 + p0
,

lim inf
t→+∞

x (t) = lim
t→+∞

x (νn) =
c − α2

1 + p0
.

Case 1. Assume that α1 > 0 and α1 ≥ α2 ≥ 0. It follows from (5) that, for any
ε > 0,

z (t) ≥ x (t) + p (t)
c − α2 − ε

1 + p0
. (7)

Letting in (7) t = µn and passing to the limit as n → +∞, we obtain

c ≥
c + α1

1 + p0
+ p0

c − α2 − ε

1 + p0
,
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or, equivalently,

α1 ≤ p0 (α2 + ε) . (8)

Let ε = (2p0)
−1

(1 − p0)α2. Since p0 < 1, (8) yields

α1 ≤
1

2
α2 (p0 + 1) < α2,

which contradicts our initial assumption that α1 ≥ α2.
Case 2. Assume now that α2 > 0 and α2 ≥ α1 ≥ 0. Similarly to Case 1, (5)

implies that, for any ε > 0,

z (t) ≤ x (t) + p (t)
c + α1 + ε

1 + p0
,

and one has

α2 ≤ p0 (α1 + ε) . (9)

Choosing ε = (2p0)
−1

(1 − p0)α1 and proceeding as earlier, we obtain the desired
contradiction. The proof is complete now.

3. The case when (3) holds.

Lemma 3.1. Let x (t) be a nonoscillatory solution of (1) and z (t) be defined by
(5). Then z (t) is eventually increasing or decreasing and there exists a finite limit
limt→+∞ z (t) = L.

Proof. Assume that both x (t) > 0 and x (σi (t)) > 0, for all t ≥ T0 ≥ t0. By (13)
and (14), for all t > s ≥ T0, one has

z (t) < z (s) + r (s) z′ (s)

∫ t

s

1

r (u)
du. (10)

(i) If there exists a T1 ≥ T0 such that z′ (T1) < 0, then it follows form (10) that
z (t) < z (s) for t > s > T1. Since z (t) is positive and decreasing, there should exist
a finite limit limt→+∞ z (t) = L.

(ii) On the other hand, if there exists no s ≥ T1 such that z′ (s) < 0, then
z′ (s) ≥ 0 for all s ≥ T1. By virtue of (3), it follows from (10) that z (t) is bounded
above. Therefore, there exists a finite limit limt→+∞ z (t) = L. The proof is complete
now.

Lemma 3.2. Let x (t) be a nonoscillatory solution of Eq. (1) and z (t) be defined
by (5). Then there exist two positive constants K1, K2 and a number t∗ ≥ t0 such
that, for all t ≥ t∗, either

K1

∫ +∞

t

1

r (u)
du ≤ z (t) ≤ K2,

or

−K2 ≤ z (t) ≤ −K1

∫ +∞

t

1

r (u)
du.

Proof. Assume again that x (t) > 0 and x (σi (t)) > 0 for t ≥ T0 ≥ t0, then (13)
holds. We consider two cases.

(i) Let z′ (t) > 0 eventually, then (10) holds, for all t ≥ s ≥ t0. Lemma 3.1 asserts
that z(t) is bounded, that is, there exists a positive constant K2 such that

z (t) ≤ K2.
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By virtue of (3),

lim
t→+∞

∫ +∞

t

1

r (u)
du = 0.

Since z(t) is positive, one can choose t∗ ≥ T0 large enough so that, for some positive
constant K1,

K1

∫ +∞

t

1

r (u)
du ≤ z (t) .

(ii) Suppose now that z (t) is eventually decreasing, then (14) yields, for any
t > s ≥ t0

z (s) > z (t) − r (s) z′ (s)

∫ t

s

1

r (u)
du.

Since by Lemma 3.1 there exists a finite limit limt→+∞ z (t) = L, passing in the
latter inequality to the limit as t → +∞, we conclude that

z (s) ≥ L − r (s) z′ (s)

∫ +∞

s

1

r (u)
du. (11)

Taking into account the fact that r (t) z′ (t) is decreasing, one can choose a T1 ≥
T0 large enough to ensure that r (T1) z′ (T1) < 0. Then, for all s ≥ T1, we have
r (s) z′ (s) ≤ r (T1) z′ (T1) = −K1, where K1 is a positive constant. Therefore, it
follows from (11) that

z (t) ≥ K1

∫ +∞

t

1

r (u)
du,

for all t ≥ T1. The proof is complete.

Now we are in a position to state the first classification theorem.

Theorem 3.3. Assume that conditions (3) and (A1)-(A3) hold. Then any nonoscil-
latory solution of Eq. (1) belongs to one of the following four classes:

Γ1 : lim
t→+∞

x (t) =
c

1 + p0
6= 0, lim

t→+∞

z (t) = c 6= 0, lim
t→+∞

r (t) z′ (t) = µ;

Γ2 : lim
t→+∞

x (t) =
c

1 + p0
6= 0, lim

t→+∞

z (t) = c 6= 0,

lim
t→+∞

r (t) z′ (t) = ±∞;

Γ3 : lim
t→+∞

x (t) = lim
t→+∞

z (t) = 0, lim
t→+∞

r (t) z′ (t) = µ 6= 0;

Γ4 : lim
t→+∞

x (t) = lim
t→+∞

z (t) = 0, lim
t→+∞

r (t) z′ (t) = ±∞,

where c and µ are some constants.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1). As above, without loss
of generality, we may assume that x (t) is eventually positive for all t ≥ T0 ≥ t0.
Then (13) holds and, by Lemma 3.1, there exists a finite limit limt→+∞ z (t) = c.
Obviously, we have either

lim
t→+∞

z (t) = c 6= 0,

or
lim

t→+∞

z (t) = 0,

which, by Lemma 2.1, yields either

lim
t→+∞

x (t) =
c

1 + p0
,
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or
lim

t→+∞

x (t) = 0.

Taking into account that, by (A3), r (t) z′ (t) is decreasing, there are two possibili-
ties:

lim
t→+∞

r (t) z′ (t) = µ,

where µ ∈ R, or,
lim

t→+∞

r (t) z′ (t) = −∞.

Repeating similar reasoning for an eventually negative nonoscillatory solution x (t)
of Eq. (1), it is not difficult to see that all nonoscillatory solutions fall into one of
the classes described in the theorem.

It remains only to prove that, for solutions that belong to Γ3, one has µ 6= 0. To
this end, assume that x (t) is an eventually positive nonoscillatory solution of Eq.
(1) that belongs to Γ3. Observe that assumption (3) and positivity of r(t) yield,
respectively,

lim
t→+∞

∫ +∞

t

1

r (u)
du = 0,

d

dt

(
∫ +∞

t

1

r (u)
du

)

< 0.

Applying l’Hôpital’s rule, we conclude that

lim
t→+∞

z (t)
∫ +∞

t
1

r(u)du
= lim

t→+∞

d
dt

(z (t))

d
dt

(

∫ +∞

t
1

r(u)du
) = lim

t→+∞

(−r (t) z′ (t)) = −µ.

By virtue of Lemma 3.2, there exist two positive constants K1 and K2 such that

K1

∫ +∞

t

1

r (u)
du ≤ z (t) ≤ K2,

which implies, in particular, that

z (t)
∫ +∞

t
1

r(u)du
≥ K1,

and thus, µ 6= 0. This completes the proof.

Example 1. For t ≥ 2, consider the neutral differential equation
(

r (t) (x (t) + p (t)x (t − 1))′
)′

+ a (t)x2 (σ (t)) = 0, (12)

where

r (t) = t2, p (t) =
t

2t + 1
, σ (t) =

t

2
,

a (t) =
2t3
(

4t3 + 6t − 1
)

2 (t + 1)2 (t − 2t2 + 1)3
.

Observe that
∫ +∞

1

1

r (u)
du =

∫ +∞

1

1

u2
du = 1 < +∞.

An exact solution to Eq. (12) is

x (t) =
1

t
+ 2.

It is easy to see that

lim
t→+∞

x (t) = 2 =
3

1 + 1/2
,
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lim
t→+∞

z (t) = lim
t→+∞

(

1

t
+ 2 +

t

2t + 1

(

1

t − 1
+ 2

))

= 3,

and

lim
t→+∞

r (t) z′ (t) = − lim
t→+∞

4t4 − 4t2 + 2t + 1

(t − 2t2 + 1)
2 = −1.

Thus, x (t) belongs to the class Γ1.

4. The case when (4) holds.

Lemma 4.1. Let x (t) be an eventually positive (negative) solution of Eq. (1), z(t)
be defined by (5), and assume that (4) holds. Then z′ (t) ≥ 0 (z′ (t) ≤ 0) eventually.

Proof. Without loss of generality, we assume that there exists a T0 ≥ t0 such that
x (t) > 0 and x (σi (t)) > 0, for all t ≥ T0 ≥ t0 and all i ∈ ∆. The case when x(t) is
eventually negative is considered similarly. Then, one obviously has

z (t) ≥ x (t) > 0, for all t ≥ T0, (13)

and since

(r (t) z′ (t))
′

= −f (t, x (σ1 (t)) , x (σ2 (t)) , . . . , x (σn (t))) < 0, (14)

we observe that r (t) z′ (t) is decreasing. Suppose, contrary to our assertion, that
there exits a T1 ≥ T0 such that z′ (T1) < 0. Then, r (T1) z′ (T1) < 0, and, by virtue
of (14), for all t ≥ T1,

r (t) z′ (t) ≤ r (T1) z′ (T1) < 0. (15)

Integrating (15) from T1 to t, one has

z (t) < z (T1) + r (T1) z′ (T1)

∫ t

T1

1

r (u)
du. (16)

Passing in (16) to the limit as t → +∞, we conclude that z (t) → −∞, which
contradicts the fact that z (t) > 0 eventually. Hence, z is eventually nondecreasing,
and the proof is complete.

Theorem 4.2. Assume that conditions (4) and (A1)-(A3) hold. Then any nonoscil-
latory solution of Eq. (1) belongs to one of the following five classes:

Ω1 : lim
t→+∞

x (t) = lim
t→+∞

z (t) = 0, lim
t→+∞

r (t) z′ (t) = 0;

Ω2 : lim
t→+∞

x (t) = lim
t→+∞

z (t) = 0, lim
t→+∞

r (t) z′ (t) = µ 6= 0;

Ω3 : lim
t→+∞

x (t) =
c

1 + p0
6= 0, lim

t→+∞

z (t) = c 6= 0, lim
t→+∞

r (t) z′ (t) = 0;

Ω4 : lim
t→+∞

x (t) = lim
t→+∞

z (t) = +∞, lim
t→+∞

r (t) z′ (t) = 0;

Ω5 : lim
t→+∞

x (t) = lim
t→+∞

z (t) = +∞, lim
t→+∞

r (t) z′ (t) = µ 6= 0.

Proof. Let x (t) be a nonoscillatory solution of Eq. (1). Without loss of generality,
we may assume that x (t) is positive for all t ≥ T0 ≥ t0, and thus (13) holds.
There are three possibilities for the behavior of z(t) : either limt→+∞ z (t) = 0, or
limt→+∞ z (t) = c 6= 0, or limt→+∞ z (t) = +∞, and, by Lemma 2.1, x(t) behaves
correspondingly. Note that Lemma 4.1 implies that, for sufficiently large t, one has
z′ (t) ≥ 0, and it follows from the inequality (14) that either

lim
t→+∞

r (t) z′ (t) = 0,
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or

lim
t→+∞

r (t) z′ (t) = µ > 0.

On the other hand, z′ (t) ≥ 0, and r (t) z′ (t) is nonnegative and decreasing.
Therefore,

lim
t→+∞

z (t) = c, 0 < c < +∞, or lim
t→+∞

z (t) = +∞

and

lim
t→+∞

r (t) z′ (t) = µ ≥ 0. (17)

Decreasing nature of r (t) z′ (t) and (17) yield, for t large enough,

r (t) z′ (t) ≥ µ,

that is,

z′ (t) ≥
µ

r (t)
.

Integration of the latter inequality from s to t implies that, for all t > s ≥ t0,

z (t) ≥ z (s) + µ

∫ t

s

1

r (u)
du.

If µ > 0, then, by (4),

lim
t→+∞

z (t) = +∞,

and thus, limt→+∞ x (t) = +∞. If µ = 0 and limt→+∞ z (t) = c 6= 0 (respectively,
+∞), then by Lemma 2.1,

lim
t→+∞

x (t) =
c

1 + p0
6= 0

(respectively, +∞). Completing the proof by considering in a similar manner even-
tually negative nonoscillatory solutions, we conclude that any nonoscillatory solu-
tion x (t) of Eq. (1) should belong to one of the classes described in the statement
of the theorem.

Example 2. For t ≥ 2, consider the second order neutral differential equation

(

r (t) (x (t) + p (t)x (t − 1))
′
)′

+ b (t)
x2 (σ1 (t))

x2 (σ2 (t)) + 1
= 0, (18)

where

r (t) =
1

t
, p (t) =

1

3t + 1
, σ1 (t) = t − 1, σ2 (t) =

t

2
,

and

b (t) =

(

27t8 − 54t7 − 36t6 + 14t5 + 120t4 − 126t3 + 2t2 + 18t + 3
)

4t6 (t2 − 2t + 2)
2
(3t4 − 2t − 1)

3

× (t − 1)
2
(

(

t2 + 4
)2

+ 4t2
)

.

An exact nonoscillatory solution to (18) is given by

x (t) =
1

t
+ t.

Clearly,

lim
t→+∞

x (t) = +∞,
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lim
t→+∞

z (t) = lim
t→+∞

(

1

t
+ t −

1

3t + 1
+

1

(3t + 1) (t − 1)
+

t

3t + 1

)

= +∞,

and

lim
t→+∞

r (t) z′ (t) = lim
t→+∞

9t6 − 12t5 − 7t4 + 2t3 + 9t2 − 4t − 1

t3 (2t − 3t2 + 1)
2 = 0.

Hence, x (t) belongs to the class Ω4.
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