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Abstract. The authors study a higher order three point boundary value prob-

lem. Estimates for positive solutions are given; these estimates improve some
recent results in the literature. Using these estimates, new sufficient condi-
tions for the existence and nonexistence of positive solutions of the problem
are obtained. An example illustrating the results is included.

1. Introduction. In 1998, Ma [18] considered the second order boundary value
problem

u′′(t) + a(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (1)

u(0) = 0, αu(η) = u(1), (2)

and gave sufficient conditions under which this problem has at least one positive
solution. In 2007, Guo, Sun, and Zhao [11] studied the same question for the third
order boundary value problem

u′′′(t) + h(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (3)

u(0) = u′(0) = 0, u′(1) = αu′(η). (4)

Motivated by these works, we consider the nonlinear n-th order ordinary differential
equation

u(n)(t) + g(t)f(u(t)) = 0, 0 ≤ t ≤ 1, (5)

subject to boundary conditions

u(i)(0) = 0, 0 ≤ i ≤ n − 2, αu(n−2)(η) = u(n−2)(1), (6)

where
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(H1) n ≥ 3 is a fixed integer, α and η are constants such that 0 < η < 1 and
1 < α < 1/η, and

(H2) f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous, and g(t) 6≡ 0 on
[0, 1].

Our interest here is in obtaining positive solutions to this boundary-value problem,
that is, solutions u(t) of (5)–(6) such that u(t) > 0 for t ∈ (0, 1).

The importance of boundary-value problems in a wide variety of applications
in the physical, biological and engineering sciences is now well documented in the
literature, and in the last ten years this has become an extremely active area of
research. The monographs of Agarwal [1] and Agarwal, O’Regan, and Wong [3]
contain excellent surveys of known results. More recent contributions to the study
of multipoint boundary-value problems can be found in the papers of Agarwal and
Kiguradze [2], Anderson and Davis [4], Cao and Ma [5], Graef, Qian, and Yang
[6, 7], Graef and Yang [8, 9], Hu and Wang [12], Infante [13], Infante and Webb
[14], Kong and Kong [15], Ma [17, 18, 19], Maroun [20], Raffoul [21], Webb [22, 23],
and Zhou and Xu [24].

We need the indicator function I to write the expression of the Green’s function
for the problem (5)–(6). Recall that if [a, b] ⊂ R := (−∞, +∞) is a closed interval,
then the indicator function I of [a, b] is given by

I[a,b](t) =

{

1, if t ∈ [a, b],

0, if t 6∈ [a, b].

Let G2 : [0, 1] × [0, 1] → [0,∞) be defined by

G2(t, s) =
t(1 − s)

1 − αη
−

αt(η − s)

1 − αη
I[0,η](s) − (t − s)I[0,t](s).

According to Ma [18], G2 is the Green’s function for the boundary value problem
(1)–(2). For n ≥ 3, we define

Gn(t, s) =

∫ t

0

Gn−1(v, s)dv, (t, s) ∈ [0, 1]× [0, 1].

Then, for n ≥ 3, Gn(t, s) is the Green’s function for the equation

u(n)(t) = 0

subject to the boundary conditions (6). Moreover, solving the problem (5)–(6) is
equivalent to finding a solution to the integral equation

u(t) =

∫ 1

0

Gn(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1.

It is obvious that

Gn(t, s) > 0, for t, s ∈ (0, 1) and n ≥ 3.

Throughout this paper, we let

F0 = lim sup
x→0+

(f(x)/x), f0 = lim inf
x→0+

(f(x)/x),

F∞ = lim sup
x→+∞

(f(x)/x), f∞ = lim inf
x→+∞

(f(x)/x).

To prove our results, we will use the following fixed point theorem known as the
Guo-Krasnosel’skii fixed point theorem [10, 16].
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Theorem 1.1. Let X be a Banach space over the reals, and let P ⊂ X be a cone in
X. Assume that Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let

L : P ∩ (Ω2 − Ω1) → P

be a completely continuous operator such that either

(K1) ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, or
(K2) ‖Lu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1 and ‖Lu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2.

Then L has a fixed point in P ∩ (Ω2 − Ω1).

The next section contains some preliminary lemmas; our main results appear in
Sections 3 and 4.

2. Preliminary lemmas. The following lemmas will be used in the proofs of our
main results.

Lemma 2.1. If u ∈ Cn[0, 1] satisfies the boundary conditions (6) and

u(n)(t) ≤ 0 for 0 ≤ t ≤ 1, (7)

then for each i = 0, 1, 2, . . . , n − 2, we have

u(i)(t) ≥ 0 for 0 ≤ t ≤ 1. (8)

Proof. If we define w(t) = u(n−2)(t) for 0 ≤ t ≤ 1, then we have

w′′(t) ≤ 0 for 0 ≤ t ≤ 1,

w(0) = 0, αw(η) = w(1).

Therefore,

u(n−2)(t) = w(t) =

∫ 1

0

G2(t, s)(−w′′(t)) dt ≥ 0, 0 ≤ t ≤ 1.

Since u(0) = u′(0) = · · · = u(n−3)(0) = 0, we have

u(i)(t) ≥ 0 for 0 ≤ t ≤ 1 and i = 0, 1, . . . , n − 3,

which completes the proof of the lemma.

The next two lemmas give estimates on the growth of u(t).

Lemma 2.2. If u ∈ Cn[0, 1] satisfies (6) and (7), then

u(t) ≥ tn−1u(1) for 0 ≤ t ≤ 1.

Proof. If we define

h(t) = u(t) − tn−1u(1), 0 ≤ t ≤ 1, (9)

then

h(n)(t) = u(n)(t) ≤ 0, 0 ≤ t ≤ 1. (10)

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1. It is easy to see
from (9) that

h(0) = h′(0) = · · · = h(n−2)(0) = h(1) = 0.

Since h(0) = h(1) = 0, by the Mean Value Theorem, there exists r1 ∈ (0, 1) such
that h′(r1) = 0. Similarly, h′(0) = h′(r1) = 0 implies that there exists r2 ∈ (0, r1)
such that h′′(r2) = 0. Continuing this procedure, we can find a sequence of numbers

1 > r1 > r2 > · · · > rn−2 > 0
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such that
h(i)(ri) = 0, 1 ≤ i ≤ n − 2.

Since
h(n)(t) ≤ 0 for 0 ≤ t ≤ 1, (11)

h(n−2) is concave downward on (0, 1). Since h(n−2)(0) = h(n−2)(rn−2) = 0, we have

h(n−2)(t) ≥ 0 on [0, rn−2] and h(n−2)(t) ≤ 0 on [rn−2, 1].

Since h(n−3)(0) = h(n−3)(rn−3) = 0, we have

h(n−3)(t) ≥ 0 on [0, rn−3] and h(n−3)(t) ≤ 0 on [rn−3, 1].

If we continue this procedure, we finally obtain

h′(t) ≥ 0 on [0, r1] and h′(t) ≤ 0 on [r1, 1]. (12)

Combining (12) with the fact that h(0) = h(1) = 0 yields

h(t) ≥ 0 for 0 ≤ t ≤ 1,

which completes the proof of the lemma.

Lemma 2.3. If u ∈ Cn[0, 1] satisfies (6) and (7), then

u(t) ≤ tn−3u(1) for t ∈ [0, 1].

Proof. If we define
h(t) = tn−3u(1) − u(t), t ∈ [0, 1], (13)

then
h(n)(t) = −u(n)(t) ≥ 0, 0 ≤ t ≤ 1. (14)

To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1. It is easy to see
from (13) that

h(0) = h′(0) = · · · = h(n−4)(0) = h(1) = 0.

By the Mean Value Theorem, in view of the fact that h(0) = h(1) = 0, there exists
r1 ∈ (0, 1) such that h′(r1) = 0. Because h′(0) = h′(r1) = 0, there exists r2 ∈ (0, r1)
such that h′′(r2) = 0. If we continue his procedure, then we can find a sequence of
numbers

1 > r1 > r2 > · · · > rn−3 > 0

such that
h(i)(ri) = 0, 1 ≤ i ≤ n − 3.

We can also see from (13) that

h(n−2)(0) = 0, αh(n−2)(η) = h(n−2)(1).

Therefore, we have

h(n−2)(t) =

∫ 1

0

G2(t, s)(−h(n)(s)) ds ≤ 0, 0 ≤ t ≤ 1.

This means that h(n−3)(t) is nonincreasing. Since h(n−3)(rn−3) = 0, we have

h(n−3)(t) ≥ 0 on [0, rn−3] and h(n−3)(t) ≤ 0 on [rn−3, 1].

Since h(n−4)(0) = h(n−4)(rn−4) = 0, we have

h(n−4)(t) ≥ 0 on [0, rn−4] and h(n−4)(t) ≤ 0 on [rn−4, 1].

Continuing in this way, we finally obtain

h′(t) ≥ 0 on [0, r1] and h′(t) ≤ 0 on [r1, 1]. (15)
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Combining (15) with the fact that h(0) = h(1) = 0 yields

h(t) ≥ 0 for 0 ≤ t ≤ 1,

which completes the proof of the lemma.

The next theorem is an immediate consequence of Lemmas 2.1, 2.2, and 2.3.

Theorem 2.4. If u ∈ Cn[0, 1] satisfies (6) and (7), then 0 ≤ u(t) ≤ u(1) for
0 ≤ t ≤ 1, and

tn−3u(1) ≥ u(t) ≥ tn−1u(1) for 0 ≤ t ≤ 1. (16)

In particular, if u(t) is a nonnegative solution to the problem (5)–(6), then u(t)
satisfies (16).

Note that Theorem 2.4 provides both an upper and a lower estimate to each
positive solution to the problem (5)–(6).

Guo, Sun, and Zhao [11] obtained the following result.

Lemma 2.5. Let 1 < α < 1/η. Then

0 ≤ G3(t, s) ≤ q(s) for all (t, s) ∈ [0, 1] × [0, 1]

and
γq(s) ≤ G3(t, s) for all (t, s) ∈ [η/α, η] × [0, 1],

where 0 < γ = η2

2α2(1+α) min{α − 1, 1} < 1, and

q(s) =
1 + α

1 − αη
s(1 − s), s ∈ [0, 1]. (17)

Remark 2.6. Each time we obtain a pair of upper and lower estimates, we face
the question of the sharpness of these estimates. We propose to use a ratio – the
ratio of the L1 norm of the upper estimate on solutions to the L1 norm of the lower
estimate – as a measure of the sharpness. If the ratio is very large, then the gap
between the lower and upper estimates is large, and so this indicates that there is
room for improvement.

Based on our results in Theorem 2.4, we see that

u(1)

n
=

∫ 1

0

tn−1u(1) dt ≤

∫ 1

0

u(t) dt =

∫ 1

0

tn−3u(1) dt =
u(1)

n − 2
,

and so the ratio in our case is n/(n − 2).
In order to make a comparison to the results of Guo, Sun, and Zhao above, first

note that we must compare with the case of n = 3 in our problem. Moreover, their
estimates are on the Green’s function not the solutions. The ratio of their upper
estimate q(s) to their lower estimate γq(s) on G(t, s) gives

1

γ
=

2α2(1 + α)

η2 min{α − 1, 1}
,

and that this ratio 1/γ depends on the parameters α and η. In order to interpret
this in terms of the solutions, observe that

u(t) =

∫ 1

0

G3(t, s)g(s)f(u(s)) ds ≤

∫ 1

0

q(s)g(s)f(u(s)) ds

for t ∈ [0, 1]. Also,

u(t) ≥ γ

∫ 1

0

q(s)g(s)f(u(s)) ds
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for t ∈ [η/α, η]. Therefore,
∫ 1

0

u(τ) dτ ≤

∫ 1

0

q(s)g(s)f(u(s)) ds, (18)

and
∫ 1

0

u(τ) dτ ≥

∫ η

η/α

u(τ) dτ ≥ (η − η/α)γ

∫ 1

0

q(s)g(s)f(u(s)) ds. (19)

Thus, from (18) and (19), we have that the ratio of the L1 norms of the upper and
lower bounds on the solutions is

R =
1

γ(η − η/α)
.

For example, if we let α = 11/10 and η = 9/10, then this ratio becomes R ≈
766.83. That is, in this case the ratio of the L1 norm of the upper estimate to the
solution is more than 760 times that of the lower estimate. But with n = 3, our
result gives this ratio to be 3.

In addition to the fact that our ratio does not depend on the parameters α and
η, another positive feature is that our estimates become sharper if the order of the
boundary value problem increases. For example, if n = 12, then our upper estimate
on the solution is t9u(1) and our lower estimate is t11u(1), and the ratio of the L1

norms is 6/5. This means the upper estimate is just 20% larger than the lower
estimate.

3. Existence of positive solutions. We begin by introducing some notation.
Define

A =

∫ 1

0

Gn(1, s)g(s)sn−1 ds and B =

∫ 1

0

Gn(1, s)g(s)sn−3 ds.

Let X = C[0, 1] with the supremum norm

‖v‖ = max
t∈[0,1]

|v(t)|, v ∈ X,

and let

P =
{

v ∈ X : v(1) ≥ 0, tn−1v(1) ≤ v(t) ≤ v(1)tn−3 on [0, 1]
}

.

Clearly, X is a Banach space and P is a positive cone of X . Define the operator
T : P → X by

Tu(t) =

∫ 1

0

Gn(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1, u ∈ P.

By a standard argument, we can show that T : P → X is a completely continuous
operator. It is obvious that if u ∈ P , then u(1) = ‖u‖. We see from Theorem 2.4
that if u(t) is a nonnegative solution to the problem (5)–(6), then u ∈ P . In a
similar fashion to the proof of Theorem 2.4, we can show that T (P ) ⊂ P . To find
a positive solution to the problem (5)–(6), we only need to find a fixed point u of
T such that u ∈ P and u(1) = ‖u‖ > 0.

We now give our first existence result.

Theorem 3.1. If BF0 < 1 < Af∞, then the problem (5)–(6) has at least one
positive solution.
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Proof. Choose ε > 0 such that (F0 + ε)B ≤ 1. There exists H1 > 0 such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.

For each u ∈ P with ‖u‖ = H1, we have

(Tu)(1) =

∫ 1

0

Gn(1, s)g(s)f(u(s)) ds

≤ (F0 + ε)

∫ 1

0

Gn(1, s)g(s)u(s) ds

≤ (F0 + ε)‖u‖

∫ 1

0

Gn(1, s)g(s)sn−3ds

≤ (F0 + ε)‖u‖B ≤ ‖u‖,

which means ‖Tu‖ ≤ ‖u‖. If we let Ω1 = {u ∈ X : ‖u‖ < H1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1.

Next we construct Ω2. Since 1 < Af∞, we can choose c ∈ (0, 1/4) and δ > 0 such
that

(f∞ − δ)

∫ 1

c

Gn(1, s)g(s)sn−1 ds > 1.

There exists H3 > 0 such that

f(x) ≥ (f∞ − δ)x for x ≥ H3.

Let H2 = max{H3c
1−n, 2H1}. Now if u ∈ P with ‖u‖ = H2, then for c ≤ t ≤ 1, we

have

u(t) ≥ tn−1‖u‖ ≥ cn−1H2 ≥ H3,

and

(Tu)(1) ≥

∫ 1

c

Gn(1, s)g(s)f(u(s))ds

≥ (f∞ − δ)

∫ 1

c

Gn(1, s)g(s)u(s)ds

≥ (f∞ − δ)‖u‖

∫ 1

c

Gn(1, s)g(s)sn−1 ds ≥ ‖u‖,

which means ‖Tu‖ ≥ ‖u‖. So, if we let Ω2 = {u ∈ X | ‖u‖ < H2}, then Ω1 ⊂ Ω2

and

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2.

Since condition (K1) of Theorem 1.1 is satisfied, there exists a fixed point of T in
P , and this completes the proof of the theorem.

The proof of the following theorem is similar to that of Theorem 3.1 and is
therefore omitted.

Theorem 3.2. If BF∞ < 1 < Af0, then the problem (5)–(6) has at least one
positive solution.
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4. Nonexistence results and an example. In this section, we establish some
nonexistence results for the positive solutions of the problem (5)–(6). We also
include an example to illustrate our existence and nonexistence criteria.

Theorem 4.1. If Bf(x) < x for all x > 0, then the problem (5)–(6) has no positive
solutions.

Proof. Assume to the contrary that u(t) is a positive solution of the problem (5)–(6).
Then u ∈ P , u(t) > 0 for 0 < t ≤ 1, and

u(1) =

∫ 1

0

Gn(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

Gn(1, s)g(s)u(s) ds

≤ B−1u(1)

∫ 1

0

Gn(1, s)g(s)sn−3 ds = u(1),

which is a contradiction.

The proof of the next result is quite similar to that of Theorem 4.1, and so we
omit the details.

Theorem 4.2. If Af(x) > x for all x > 0, then the problem (5)–(6) has no positive
solutions.

We conclude our paper with an example to show that our existence and nonex-
istence results are sharp.

Example 4.3. Consider the boundary-value problem

u(6)(t) = 10t ·
λu(t)(1 + 3u(t))

1 + u(t)
, 0 < t < 1, (20)

u(i)(0) = 0 for 0 ≤ i ≤ 4, u′′′′(1) = (11/10) · u′′′′(9/10), (21)

where g(t) = 10t,

f(u) =
λu(1 + 3u)

1 + u
,

and λ > 0 is a parameter. This problem is a special case of the problem (5)–(6)
in which n = 6, α = 11/10, and η = 9/10. It is easy to see that F0 = f0 = λ,
F∞ = f∞ = 3λ, and λu ≤ f(u) ≤ 3λu for u ≥ 0. For the problem (20)–(21),
calculations show that

A = 52112120831/665280000000 and B = 87187129/756000000.

By Theorem 3.1, we have that if

4.2555 ≈
1

3A
< λ <

1

B
≈ 8.6710,

then problem (5)–(6) has at least one positive solution. By Theorems 4.1 and 4.2,
we see that if either

λ <
1

3B
≈ 2.8903 or λ >

1

A
≈ 12.7664

then (20)–(21) has no positive solutions.
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