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Abstract. This work deals with the relationship between a continuous dy-
namical system and numerical methods for its computer simulations, viewed
as discrete dynamical systems. The term ‘dynamic consistency’ of a numer-
ical scheme with the associated continuous system is usually loosely defined,
meaning that the numerical solutions replicate some of the properties of the so-
lutions of the continuous system. Here, this concept is replaced with topological

dynamic consistency, which is defined in precise terms through the topological
equivalence of maps. This ensures that all the topological properties (e.g.,
fixed points and their stability, periodic solutions, invariant sets, etc.) are pre-
served. Two examples are provided which demonstrate that numerical schemes
satisfying this strong notion of dynamic consistency can be constructed using
the nonstandard finite difference method.

1. Introduction. The solutions of continuous dynamical systems given by systems
of ordinary differential equations are typically computed by various numerical pro-
cedures defined on discretized time meshes. There has been a considerable effort
in the recent years to construct numerical procedures which correctly replicate the
properties of the original dynamical system by using the non-standard finite differ-
ence method. The most common requirement placed on the numerical method is
elementary stability. This concept refers to preserving the hyperbolic fixed points of
the original system with their correct linear stability. It was introduced by Mickens,
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[12], and has since been widely used,[13, 14, 6]. Other dynamical system proper-
ties have also been considered, e.g., invariant sets, dissipativity, and non-hyperbolic
fixed points, [15, 8, 2, 3]. The most general concept used in the literature is that of
dynamic consistency. In [1] we find the definition: “A difference equation is called
dynamically consistent with the differential equation it approximates if they both
possess the same dynamics such as stability, bifurcation and chaos.” Clearly, the
content of this concept is determined by what we call dynamics and it can mean
different things in different situations.

As an example, the finite difference scheme producing the numerical solutions
depicted in Fig. 2 may be considered to be dynamically consistent with the differ-
ential equation with the solutions given in Fig. 1, since they are clearly both not
chaotic, and the only sets that are both positively and negatively invariant are the
fixed points, which are the same and have the same asymptotic stability.

However, the mismatch between the solutions depicted in Figs. 1 and 2 is obvious.
The lack of monotonicity of the numerical solutions is apparently a symptom of a
more serious discrepancy between the discrete and the continuous dynamical system
which will be made clear in the sequel. Other concepts attempting to link the
difference equations with the differential equations they approximate have also been
used, e.g., asymptotic consistency, [9], as well as general purpose concepts such as
qualitative stability, [5], all referring to the preservation of particular properties of
the involved dynamical systems.

The aim of this paper is to expand the mathematical theory which connects the
continuous dynamical systems defined by systems of ordinary differential equations
and the discrete dynamical schemes defined by their numerical schemes. To that
end, we consider the problem in the general setting of Topological Dynamics. The
topological dynamic consistency of a discrete dynamical systems with a certain con-
tinuous dynamical system is considered in the sense of topological equivalence (also
called ‘conjugacy’) between the evolution operator of the continuous dynamical sys-
tem and the set of maps defining the respective discrete dynamical system for all
positive time step sizes. In this setting, the concept of dynamic consistency acquires
a richer and precise meaning, as presented in the next section. Section 3 is devoted
to classical and non-standard schemes for two examples that motivate our study.
In Section 4, the analysis of topological equivalence of maps is made more explicit
in the one-dimensional case. This enables us to properly revisit, in Section 5, the
two examples. Concluding remarks on our future plan are made in Section 6.

2. Topological Equivalence of maps. Let D ⊆ Rd, be a domain for d ≥ 1, and
consider an initial value problem for a system of differential equations

dy

dt
= f(y), (1)

y(0) = x, (2)

where x ∈ D and f ∈ C0(D,D). We assume that (1) defines a (positive) dynamical
system on D. This means that for every x ∈ D the problem (1)–(2) has a unique
solution y = y(x, t) ∈ D for all t ∈ [0,∞). For a given t ∈ (0,∞), the mapping
S(t) : D → D given by S(t)(x) → y(x, t) is called the evolution operator and the
set

{S(t) : t ∈ (0,∞)} (3)

is the well-known evolution semi-group. For every x ∈ D the set {S(t)(x) : t ∈
(0,∞)} is called the (positive) orbit of x.
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Suppose that the solution of (1)–(2) is approximated on the time grid {tk = kh :
k = 0, 1, ...} by a difference equation of the form

yk+1 = F (h)(yk), (4)

y0 = x, (5)

where the maps F (h) : D → D are defined for every h > 0. Hence, for every
given h > 0, the equation (4) defines a discrete dynamical system with an evolution
semi-group

{(F (h))k : k = 1, 2, ...}. (6)

The orbit of a point x ∈ D is a the sequence

{(F (h))k(x) : k = 0, 1, 2, ...}.

Our approach is to relate the properties of the maps in (3) and the maps in the
set

{F (h) : h > 0}. (7)

More precisely, we compare the set of continuous dynamical systems defined by the
maps in (3) and the set of discrete dynamical systems defined by the maps in (7).
In the spirit of the philosophy of the non-standard finite difference method, it is
essential that the properties of the exact solution be preserved for all step sizes (as
opposed to only for sufficiently small step sizes).

The strongest connection between dynamical systems, from topological point of
view, is their topological equivalence.

Definition 2.1. Let X and Y be two topological spaces. The maps p : X → X
and q : Y → Y are called topologically equivalent if there exists a homeomorphism
µ : X → Y such that

p ◦ µ = µ ◦ q . (8)

In the standard literature on Topological Dynamical Systems topological equiv-
alence is also called ‘topological conjugacy’ and equation (8) is referred to as the
conjugacy equation, [10], reflecting the fact that the following diagram is commuta-
tive

X
p

- X

µ µ

? ?

Y - Y
q

We prefer to use the term topological equivalence since the respective maps are
topologically indistinguishable.

Definition 2.2. The difference scheme (4) is called topologically dynamically con-
sistent with the dynamical system (1), whenever all the maps in the set (3) are
topologically equivalent to each other and every map in the set (7) is topologically
equivalent to them. (Thus, the maps S(t) and F (h) are topologically the same for
every t > 0 and h > 0).
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An important property of the operator S(t), for a given t > 0, is that it is
homeomorphisms of D onto its image S(t)(D). Equivalently, this means that S(t)
is continuous and injective. Certainly, if an operator F (h) is required to be topo-
logically equivalent to S(t) then it should be also continuous and injective. This
basic requirement for F (h) is of fundamental importance as it ensures that we are
comparing homeomorphisms in (3) with homeomorphisms in (7). Thus, we make
the following assumptions about F (h) which imply this property:

F ∈ C1([0,∞], C1(D,D)), (9)

dF (h)

dx
(x) is a nonsingular matrix for each h > 0, x ∈ D . (10)

Naturally, F should satisfy also the usual consistency requirements

F (0)(x) = x,
dF (0)

dh
(x) = f(x). (11)

3. Some Examples. For a one-dimensional dynamical system the requirement on
F (h) to be continuous and injective implies that F (h) is strictly increasing. More
precisely, condition (10) is equivalent to

dF (h)

dx
(x) > 0, x ∈ D. (12)

This condition on F (h) was discussed in [2], where it was shown that it ensures the
monotonicity of the scheme with respect to initial value. It was also proved there
that it is a relevant substitute for elementary stability in the case of non-hyperbolic
fixed points.

We will demonstrate in the sequel that (12) is an essential ingredient of the
topological dynamic consistency of one-dimensional numerical schemes. Here, we
consider some well-known examples of equations and numerical schemes, where we
observe that the schemes which do not replicate well the dynamical properties of
the original equation also violate (12).

3.1. The logistic equation.

dy

dt
= f(y) = y(1 − y). (13)

The exact solution of this equation is well-known and is given here in Fig. 1. This
equation defines a dynamical system on D = [0,+∞) with an asymptotically stable
fixed point at y = 1 and an unstable fixed point at y = 0. We consider the Forward
Euler method

yk+1 = F (h, yk) = yk + hf(yk), (14)

and the second order Runge-Kutta method

yk+1 = F (h, yk) = yk +
h

2
(f(yk) + f(yk + hf(yk)). (15)

The numerical solutions by these methods for h = 1.8 are presented in Figs. 2 and
3. It is easy to see that the function F in each case violates condition (12). Hence
the fact that the numerical solutions in Figs. 2 and 3 do not replicate the behavior
of the exact solution in Fig. 1 is not surprising. The dynamical inconsistency of
these methods is considered in [12] and other publications. However, the discussion
typically relates only to the fixed points and their stability properties. Here, we
can observe that for the selected value of the step size the numerical solutions cor-
rectly preserve the fixed points and their stability properties. Nevertheless, these
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numerical solutions can hardly be considered a qualitatively correct replica of the
exact solutions (Fig. 1). In particular, one can mention that the equations (14)
and (15) do not define discrete dynamical systems on [0,+∞) but only on a closed
finite interval of the form [0,M ]. Furthermore, the solutions do not have the correct
monotonicity and display varying levels of oscillations. We claim that the condition
(12) plays an important role in preserving the topological properties of the solu-
tions of dynamical systems. Indeed, the non-standard schemes which are known to
replicate well the properties of the exact solutions satisfy (12). In [12, Section 2.4]
Mickens considered the non-standard scheme

yk+1 − yk

h
= yk(1 − yk+1),

or, equivalently,

yk+1 = F (h, yk) =
(1 + h)yk

1 + hyk

. (16)

A set of numerical solutions by this scheme using the same step size h = 1.8 is
depicted in Fig. 4, where the preservation of the topological properties is apparent.
The function F associated with the scheme satisfies (12). Indeed,

dF (h)

dy
(x) =

1 + h

(1 + hx)2
> 0, h > 0, x ∈ D.
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Figure 1. Exact solution Figure 2. Forward Euler method
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Figure 3. Runge-Kutta method Figure 4. Mickens’ non-standard method
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3.2. The combustion equation.

dy

dt
= f(y) = y2(1 − y). (17)

The exact solution of this equation is given in Fig. 5. This equation defines a
dynamical system on D = (−∞,+∞) with an asymptotically stable fixed point at
y = 1 and an unstable fixed point at y = 0. Note that the fixed point at y = 0

is not hyperbolic since
df

dy
(0) = 0. Therefore, the behavior of the solutions around

this point cannot be described in terms of linear stability. Here y = 0 is attractive
for solutions above it and repelling for solutions below it.

We consider the Forward Euler method (14) and the Runge-Kutta method (15).
A set of numerical solutions produced by these schemes with h = 1.7 is given in
Figs. 6 and 7. The discrepancy with the exact solutions is obvious. However, it
should be also observed that the numerical solutions in both cases preserve the fixed
points y = 0 and y = 1 as well as their stability. This, once again, suggests that
preserving only the fixed points and their stability is not sufficient to adequately
replicate the qualitative behavior of the dynamical system. It is easy to see that
(12) does not hold for any of these schemes. It is seen that non-standard schemes
which preserve the fixed points and their stability do not automatically satisfy (12).
The numerical solutions of the combustion equation was studied in some detail in
[13] and the following non-standard scheme was proposed,

yk+1 − yk

h
= y2

k(1 − yk+1),

or, equivalently,

yk+1 = F (h)(yk) =
yk + hy2

k

1 + hy2
k

. (18)

It was proved that this scheme preserves the positivity and the boundedness of the
solution as well as the asymptotic stability of the fixed point y = 1. It is easy to
see that this scheme violates (12). As a results there are numerical solutions which
merge or intersect. For example, see Fig. 8, where a set of solutions produced by
this scheme with h = 1.7 are presented. Furthermore, while the fixed points y = 0,
y = 1 and their stability are preserved, their basins of attraction are quite different
from the respective basins of attraction for the solutions of the original equation.
Hence, F (h) in (18) is not topologically equivalent to the evolution operator S(t)
of (17).
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Figure 5. Exact solution Figure 6. Forward Euler method
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Figure 7. Runge-Kutta method Figure 8. Mickens’ non-standard method

These simple examples indicate that the difference schemes, both standard and
nonstandard, which preserve the fixed points and their stability, are not necessarily
topologically dynamically consistent. On the other hand, the topological dynamical
consistency, that is the topological equivalence of F (h), h > 0, and S(t), t >
0, implies preservation (up to a homeomorphism) of all topological properties of
the given continuous dynamical system, in particular, the fixed points and their
stability.

4. One-dimensional maps. Here we consider the continuous dynamical system
given by (1) and the discrete dynamical system given by (4), when D is an interval.

Dynamical systems defined by a single equation have attracted significant atten-
tion from the researchers working on the Nonstandard Finite Difference Method.
The reason is two fold. On the one hand, since some important models in math-
ematical physics and in biomathematics belong to this class, there is a need for
numerical schemes that replicate their essential properties. On the other hand,
the one-dimensional case has relatively simple dynamics. For example, all orbits
of (1) are monotone and all minimal invariant sets are fixed points; these are also
the properties of the orbits of (4) whenever (9) and (10), i.e., (12) in this case,
hold. Consequently, the one-dimensional case is a convenient setting for develop-
ing, demonstrating, and testing new methods and approaches, which then can be
extended to multi-dimensional systems of ODEs and possibly PDEs, [12, 13, 14, 16].

The following theorem is a useful tool for proving the topological dynamic con-
sistency of difference schemes. Its proof, omitted here for the sake of simplicity,
uses techniques developed within the theory of Topological Dynamics, e.g., [10] and
references therein. Indeed, the homeomorphism µ in the conjugacy equation (8 ),
with p = ϕ and q = ψ, is derived by a construction method used in [10, Proposition
2.1.7].

Theorem 4.1. Let D be an interval and let ϕ : D → D and ψ : D → D be
continuous injections. If

(i) (ϕ(x) − x)(ψ(x) − x) > 0, x ∈
o

D,
(ii) ϕ(D) = D ⇐⇒ ψ(D) = D,
then ϕ and ψ are topologically equivalent.

5. The examples revisited. Let us consider again the logistic equation (13).
Preserving the fixed points of the equation within a numerical scheme is typically
not difficult. In fact, all the schemes considered in Section 3.1 have fixed points 0 and
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1. Let us assume that we have a numerical scheme (4) for (13) which preserves its
fixed points, and satisfies the conditions (9), (10), and (11). As was shown, Mickens’
nonstandard scheme (16) is in this category. We apply Theorem 4.1 to prove that
such a scheme is topologically dynamically consistent. The domain of the dynamical
system defined by the logistic equation is D = [0,+∞) with fixed points at 0 and 1.
First we apply Theorem 4.1 on D = [0, 1]. Since for each t > 0 and h > 0 neither

S(t) nor F (h) have fixed points in
o

D = (0, 1) the product (S(t)(x)−x)(F (h)(x)−x)
has the same sign for all x ∈ (0, 1), t > 0 and h > 0. Using the consistency (11)
one can easily obtain that this sign is positive. Hence, condition (i) of Theorem 4.1
holds for the maps S(t) and F (h). Condition (ii) also holds, because both maps are
continuous bijections on [0,1], that is S(t)(D) = D and F (h)(D) = D. Therefore,
S(t) and F (h) are topologically equivalent on the interval [0, 1]. Similarly, it is
proved that S(t) and F (h) are topologically equivalent on the interval [1,+∞), by
using the fact that in this case S(t)(D) ( D and F (h)(D) ( D. This implies that
S(t) and F (h) are topologically equivalent on [0,+∞), for all t > 0 and h > 0.
Hence, this numerical scheme is topologically dynamically consistent. In particular,
the Mickens’ nonstandard scheme (16) is topologically dynamically consistent. This
scheme was also considered in [2]. It was shown there that it is member of a larger
family of numerical schemes given by

yk+1 = F (h)(yk) =
yk + φ(h)yk − φ(h)y2

k

1 + φ(h)(1 − α)yk

, (19)

where α ≤ 0 and the real function φ is such that φ(h) = h+O(h2). It was proved
in [2] that under the assumptions made on α and φ the scheme satisfies (12), or
equivalently, (10). Then, similarly to the Mickens’ scheme, it follows from the
above discussion that all the schemes given by (19) are topologically dynamically
consistent.

Next, the combustion equation defines a dynamical system on (−∞,+∞). Ap-
plying Theorem 4.1 on the three intervals (−∞, 0], [0, 1] and [1,+∞) we obtain
that every numerical scheme, which preserves the fixed points 0 and 1 and satisfies
conditions (9), (10) and (11), is topologically dynamically consistent with the com-
bustion equation. We noted in Section 3.2 that all schemes presented there satisfy
these requirements, except condition (10). The following family of schemes for the
combustion equation was derived in [2],

yk+1 = F (h)(yk) =
yk + φ(h)αy2

k
− φ(h)βy3

k

1 + φ(h)(α − 1)yk + φ(h)y2
k

, (20)

where α and β are real parameters and φ(h) = h+O(h2). It was proved that these
schemes satisfy (12) for α ≥ 1, β < −1/2 and 0 < φ(h) < c = −(2β + 1)/α2.
Therefore, under these conditions on the parameters of the family, the schemes are
topologically dynamically consistent with the combustion equation. It should be
noted that the Mickens’ scheme (18) is obtained from (20) for α = 1 and β = 0, that
is, using values of the parameters which are outside the indicated range. Here, we
propose a new scheme which does not require renormalization of the denominator:

yn+1 − yn

h
= y2

n
+

1 + h

2
y3

n
−
h+ 3

2
y2

n
yn+1,
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or, equivalently,

yk+1 = F (h)(yk) =
y + hy2

k
+ 1

2
h(h+ 1)y3

k

1 + 1
2
h(h+ 3)y2

. (21)

It is easy to see that

dF (h, y)

dy
=

1
4
h2(h+ 1)(h+ 3)y4 + (hy + 1)2

(1 + 1
2
h(h+ 3)y2

k
)2

> 0.

Therefore, condition (10) holds, and this implies the topological dynamic consis-
tency of the scheme. A set of numerical solutions obtained by (21) using h = 1.7 is
given in Fig. 9, and the agreement with Fig. 5 is evident.
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Figure 9. Nonstandard method (21)

6. Conclusion. The new concept of topological dynamic consistency was intro-
duced in this paper and characterizes an alignment of the numerical schemes to
the continuous dynamical systems they approximate, ensuring that all the topo-
logical properties of the continuous dynamical system are properly replicated. We
demonstrated on two examples that topological dynamic consistency is a desirable
property of the numerical schemes. Furthermore, we showed that by using the
nonstandard finite difference method, one can construct schemes which are topo-
logically dynamically consistent. In our future research, we plan to formulate and
prove suitable sufficient conditions for topological dynamic consistency of the nu-
merical schemes in the one-dimensional and the multi-dimensional cases, as well as
developing a systematic approach to constructing such schemes.
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