`a`
Communications on Pure and Applied Analysis (CPAA)
 

The optimal weighted $W^{2, p}$ estimates of elliptic equation with non-compatible conditions
Pages: 561 - 570, Volume 10, Issue 2, March 2011

doi:10.3934/cpaa.2011.10.561      Abstract        References        Full text (382.1K)           Related Articles

Yi Cao - College of Science, Xi'an Jiaotong University, Xi'an, 710049, China (email)
Dong Li - Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, China (email)
Lihe Wang - Department of Mathematics, Shanghai Jiaotong University, Shang hai 200240, China (email)

1 B. E, J. Dahlberg, On the poisson integral for Lipschitz and $C^1$ domains, Studia Math., 66 (1979), 13-24.       
2 B. E, J. Dahlberg, Harmonic functions in Lipschitz domains, Proceedinds of Symposia in Pure Mathematics, XXXV, part 1 (1979), 319-322.       
3 B. E, J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for harmonic function in a Lipschitz domain, Studia Math., 67 (1980), 297-314.       
4 D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd edition, Springer-Verlag, New York, 1983.       
5 C. E. Kenig and Cora Sadosky, "Harmonic Analysis and Partial Differential Equations," Chicago Lectures in Mathematics, University of Chicago Prees, Chicago, 1999.       
6 E. M. Stein, "Singular Integrals and differentiability Properties of Functions," Princeton University Press, Princeton, 1970.       

Go to top