Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport

Pages: 825 - 835, Issue special, November 2013

 Abstract        References        Full Text (460.0K)          

Shuai Zhang - Southern Polytechnic State University, Marietta, GA 30060, United States (email)
L.R. Ritter - Southern Polytechnic State University, Marietta, GA 30060-2896, United States (email)
A.I. Ibragimov - Texas Tech University, Lubbock, TX 79409, United States (email)

1 T. Bjornheden, A. Babiy, G. Bondjers, G., and O. Wiklund, Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system, Atherosclerosis, 123 (1996), 43-560.
2 C. A. Cobbold, J. A. Sherratt, and S. J. R. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach, Bull. Math. Biol., 64 (2002), 65-95.
3 M. A. Creager, M. A. and Braunwald, E. eds. "Atlas of Vascular Disease," $2^{nd}$ edition, Current Medicine, Inc. (2003)
4 A. Daugherty, and D. L. Rateri, Pathogenesis of atherosclerotic lesions, Cardiol. Rev., 1 (1993), 157-166.
5 J. Fan, and T. Watanabe, Inflammatory reactions in the pathogenesis of atherosclerosis, JAT, 10(2) (2003), 63-71.
6 R. Franssen, A. W. M. Schimmel, S. I. van Leuven, S. C. S. Wolfkamp, E. S.G. Stroes, and G. M. Dallinga-Thie, In vivo inflammation does not impair ABCA1-mediated cholesterol efflux capacity of HDL, Cholesterol, 2012 (2012), 1-8.
7 J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol deposition, Proc. Natl. Acad. Sci. USA, 76 (1977), 333-337
8 J. Hubbard and B. West, "Differential Equations: A Dynamical Systems Approach," Springer-Verlag, New York, (1991)       
9 A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, A mathematical model of atherogenesis as an inflammatory response, Math. Med. and Biol., 22 (2005), 305-333
10 A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, Stability analysis of a model of atherogenesis: An energy estimate approach, J. of Comp. and Math. Meth. in Med., 9(2) (2008), 121-142       
11 A. I. Ibragimov, L. R. Ritter, and J. R Walton, Stability analysis of a reaction-diffusion system modeling atherogenesis, SIAM J. Appl. Math., 70(7) (2010), 2150-2185       
12 K. U. Ingold, V. W. Bowry, R. Stocker, and C. Walling, Autoxidation and antioxidation by $\alpha$-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein, Proc. Natl. Acad. Sci. USA, 90 (1993), 45-49.
13 I. Jailal, G. L. Vega, S. M. and Grundy, Physologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein, Atherosclerosis, 82 (1990), 185-191.
14 W. Khovidhunkit, M. S. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser, K. R. Feingold, and C. Grunfeld, Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host, Journal of Lipid Research, 45(7) (2004), 1169-1196
15 P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis, Circulation, 105(9) (2002), 11351143.
16 L. B. Neilsen, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis, Atherosclerosis, 123 (1996), 1-15.
17 J. Neuzil, S. R. Thomas, and R. Stocker, Requirement for, promotion, or inhibition by $\alpha$-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation, Free Radic. Biol. Med., 22 (1997), 57-71
18 J. E. Packer, T. F. Slater, and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C, Nature, 278 (1979), 737-738
19 E. A. Podrez, E. Poliakov, Z. Shen, R. Zhang, Y. Deng, M. Sun, P. J. Finton, L. Shan, B. Gugiu, P. L. Fox, H. F. Hoff, R. G. Salomon, and S. L. Hazen, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36, J. Biol. Chem., 277 (2002), 38503-38516
20 Russell Ross, Cell biology of atherosclerosis, Annu. Rev. Physiol., 57 (1995), 791-804.
21 Russell Ross, Atherosclerosis-An inflammatory disease, N. Engl. J. Med., 340(2) (1999), 115-126
22 D. c. Schwenke, and T. E. Carew Initiation of atherosclerotic lesions in cholesterol fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries, Arteriosclerosis, 9 (1989), 908-918
23 H. C. Stary, B. Chandler, S. Glagov, J. R. Guyton, W. Insull Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Special report., Arterioscler. Thromb., 14 (1994), 840-856
24 D. Steinberg, Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime, Nat. Med., 8 (2002), 1211-1217
25 A. R. Tall, Plasma high density lipoproteins: metabolism and relationship to atherogenesis, J. Clin. Invest., 86 (1990), 379-384
26 N. Wang, D. Lan, W. Chen, F. Matsuura, and A. Tall, ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins, Proc. Natl. Acad. Sci. USA, 101(26) (2004), 9774-9779

Go to top