`a`

Validity and dynamics in the nonlinearly excited 6th-order phase equation

Pages: 719 - 728, Issue special, November 2013

 Abstract        References        Full Text (1474.2K)          

Dmitry Strunin - University of Southern Queensland, Toowoomba, Queensland 4350, Australia (email)
Mayada Mohammed - University of Southern Queensland, Toowoomba, Queensland 4350, Australia (email)

1 G. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames, Acta Astronaut., 4 (1977), 1177-1206.       
2 Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Progr. Theor. Phys., 55 (1976), 356-369.
3 D. Tanaka and Y. Kuramoto, Complex Ginzburg-Landau equation with nonlocal coupling, Phys. Rev. E, 68 (2003), 026219.
4 D. Tanaka, Chemical turbulence equivalent to Nikolaevskii turbulence, Phys. Rev. E, 70 (2004), 015202(R).
5 D. Tanaka, Turing instability leads oscillatory systems to spatiotemporal chaos, Progr. Theor. Phys. Suppl. N, 161 (2006), 119-126.
6 V. Nikolaevskii, "in Recent Advances in Engineering Science," edited by S.L. Koh, C.G. Speciale, Lecture Notes in Engineering, 39 Berlin: Springer, 1989, 210.
7 D. Strunin, Autosoliton model of the spinning fronts of reaction, IMA J. Appl. Math., 63 (1999), 163-177.       
8 D. Strunin, Phase equation with nonlinear excitation for nonlocally coupled oscillators, Physica D: Nonlinear Phenomena, 238 (2009), 1909-1916.       
9 D. Strunin and M. Mohammed, Parametric space for nonlinearly excited phase equation, ANZIAM J. Electron. Suppl., 53 (2011), C236-C248.       
10 D. Strunin, Nonlinear instability in generalized nonlinear phase diffusion equation, Progr. Theor. Phys. Suppl. N, 150 (2003), 444-448.       
11 http: //www.mathworks.com/matlabcentral/fileexchange/28-differential-algebraic- equation-solvers.

Go to top