`a`

Initial boundary value problem for the singularly perturbed Boussinesq-type equation

Pages: 709 - 717, Issue special, November 2013

 Abstract        References        Full Text (352.5K)          

Changming Song - College of Science, Zhongyuan University of Technology, No.41, Zhongyuan Middle Road, Zhengzhou 450007, China (email)
Hong Li - College of Science, Zhongyuan University of Technology, No.41, Zhongyuan Middle Road, Zhengzhou 450007, China (email)
Jina Li - College of Science, Zhongyuan University of Technology, No.41, Zhongyuan Middle Road, Zhengzhou 450007, China (email)

1 R. A. Admas, "Sobolev Space", Academic Press, New York, 1975.
2 P. Darapi and W. Hua, A numerical method for solving an ill-posed Boussinesq equation arising in water waves and nonlinear lattices, Appl. Math. Comput., 101 (1999), 159-207.       
3 P. Darapi and W. Hua, Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation, Math. Comput. Sim., 55 (2001), 393-405.
4 R. K. Dash and P. Darapi, Analytical and numerical studies of a singularly perturbed Boussinesq equation, Appl. Math. Comput., 126 (2002), 1-30.       
5 Z. S. Feng, Traveling solitary wave solutions to the generalized Boussinesq equation, Wave Motion, 37 (2003), 17-23.       
6 A. Friedman, "Partial Differential Equation of Parabolic Type", Prentice Hall, Eagliweed Cliffs, NJ, 1964.       
7 H. A. Levine and B. D. Sleeman, A note on the non-existence of global solutions of initial boundary value problems for the Boussinesq equation $u_{t t} = 3u_{x x x x} + u_{x x} - 12(u^2)_{x x}$, J. Math. Anal. Appl., 107 (1985), 206-210.       
8 Z.J. Yang, On local existence of solutions of initial boundary value problems for the "bad'' Boussinesq-type equation, Nonlinear Anal. TMA, 51 (2002), 1259-1271.       
9 Y. L. Zhou and H. Y. Fu, Nonlinear hyperbolic systems of higher order generalized Sine-Gordon type, Acta Math. Sinica, 26 (1983), 234-249.       

Go to top