`a`

Efficient recurrence relations for univariate and multivariate Taylor series coefficients

Pages: 587 - 596, Issue special, November 2013

 Abstract        References        Full Text (331.4K)          

Richard D. Neidinger - Davidson College, Box 7002, Davidson, NC 28035-7002, United States (email)

1 B. Altman, "Higher-Order Automatic Differentiation of Multivariate Functions in MATLAB," Undergraduate Honors Thesis, Davidson College, 2010.
2 F. Dangello and M. Seyfried, "Introductory Real Analysis," Houghton Mifflin, 2000, Section 7.4.
3 W. Dunham, "Euler: The Master of Us All," MAA, 1999, Chapter 3.       
4 A. Griewank and A. Walther, "Evaluating Derivatives," 2nd edition, SIAM, 2008, Section 13.2.       
5 M-J. Jang, C-L. Chen and Y-C. Liu, Two-dimensional differential transform for partial differential equations, Appl. Math. Computation, 121 (2001), 261-270.       
6 R.E. Moore, "Methods and Applications of Interval Analysis," SIAM, 1979, Section 3.4.       
7 R.D. Neidinger, Computing multivariable Taylor series to arbitrary order,, APL Quote Quad, 25 (1995), 134-144.
8 R.D. Neidinger, Automatic differentiation and MATLAB object-oriented programming, SIAM Review, 52 (2010), 545-563.       
9 G.E. Parker and J.S. Sochacki, Implementing the Picard iteration, Neural, Parallel and Scientific Computation, 4 (1996), 97-112.       
10 L.B. Rall, Early automatic differentiation: the Ch'in-Horneralgorithm, Reliable Computing, 13 (2007), 303-308.       
11 J. Waldvogel, Der Tayloralgorithmus, J. Applied Math. and Physics (ZAMP), 35 (1984), 780-789.       

Go to top