`a`

Representation formula for the plane closed elastic curves

Pages: 565 - 585, Issue special, November 2013

 Abstract        References        Full Text (738.8K)          

Minoru Murai - Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194, Japan (email)
Waichiro Matsumoto - Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194, Japan (email)
Shoji Yotsutani - Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, Shiga 520-2194, Japan (email)

1 J. V. Armitage and W. F. Eberlein, "Elliptic Fucntions ", Cambridge University Press, Cambridge, 2006.       
2 H.Ikeda, K.Kondo, H.Okamoto and S.Yotsutani, On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows, Commun. Pure Appl. Anal. 2 (2003), no.3, 381-390.       
3 S.Kosugi, Y.Morita and S.Yotsutani, A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions, Commun. Pure Appl. Anal. 4 (2005), no.3, 665-682.       
4 Y.Lou, W-M.Ni and S.Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications, Discrete Contin. Dyn. Syst. 10 (2004), no.1-2, 435-458.       
5 V.I. Smirnov, "A Course of Higher Mathematics", vol.3, part2, Pergamon Press, Oxford, 1964.
6 K.Watanabe, Plane domains which are spectrally determined, Ann. Global Anal. Geom. 18(2000), no.5, 447-475.       
7 K.Watanabe, Plane domains which are spectrally determined. II, J. Inequal. Appl. 7(2002), no.1, 25-47.       

Go to top