`a`

Intricate bifurcation diagrams for a class of one-dimensional superlinear indefinite problems of interest in population dynamics

Pages: 515 - 524, Issue special, November 2013

 Abstract        References        Full Text (1375.4K)          

Julián López-Gómez - Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040-Madrid, Spain (email)
Marcela Molina-Meyer - Departamento de Matemáticas, Universidad Carlos III de Madrid Campus de Leganés, Avda. Universidad 30, 28911 Leganés, Madrid, Spain (email)
Andrea Tellini - Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain (email)

1 E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003.       
2 F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of Nonsingular Solutions, Numer. Math., 36 (1980), 1-25.       
3 F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part II: Limit Points, Numer. Math., 37 (1981), 1-28.       
4 F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30.       
5 J. C. Eilbeck, The pseudo-spectral method and path-following in Reaction- Diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610.       
6 H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, 1986.       
7 J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988.
8 J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equations, in "Handbook of Differential Equations: Stationary partial differential equations. Vol. II'' (eds. M. Chipot and P. Quittner), Elsevier, (2005), 211-309.       
9 J. López-Gómez, M. Molina-Meyer and A. Tellini, Spiraling bifurcation diagrams in superlinear indefinite problems, Submitted.
10 J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Comm. Pure Appl. Anal., 13 (2014), 1-73.

Go to top