Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization
Pages: 355  363, Issue special, November 2013
Abstract
References
Full Text (138.9K)
Navnit Jha  Department of Mathematics, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi110021, India (email)
1 
A. H. Nayfeh, "Introduction to Perturbation Technique," A WileyInterscience Publication. WileyInterscience [John Wiley & Sons], New York, 1981. 

2 
K. W. Chang and F. A. Howes, "Nonlinear Singular Perturbation Phenomena: Theory and Applications," Applied Mathematical Sciences, 56. SpringerVerlag, New York , 1984. 

3 
J. Kevorkian and J. D. Cole, "Multi Scale and Singular Perturbation Methods," Applied Mathematical Sciences, 114. SpringerVerlag, New York , 1996. 

4 
E.O'Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed onedimensional reaction diffusion problem, Math. Comput., 47 (1986), 555570. 

5 
R. Vulanovic, Fourth order algorithms for semilinear singular perturbation problems, Numer. Algorithms, 16 (1997), 117128. 

6 
R. K. Mohanty, N. Jha and D. J. Evans, capitalized. Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems, Int. J. Comput. Math., 81 (2004), 615627. 

7 
M. Kumar, P. Singh and H. K. Mishra, capitalized. An initial value technique for singularly perturbed boundary value problems via cubic spline, Int. J. Comput. Meth. Eng. Sc. Mech., 8 (2007), 419427. 

8 
C. Y. Jung and R. Temam, Finite volume approximation of one dimensional stiff convectiondiffusion equation, J. Sci. Comput., 41 (2009), 384410. 

9 
R. Lin, A robust finite element method for singularly perturbed convectiondiffusion problems, Discrete Contin. Dyn. Syst., 9 (2009), 496505. 

10 
B. Lin, K. Li and Z. Cheng, Bspline solution of a singularly perturbed boundary value problem arising in biology, Chaos, Solitons Fractals, 42 (2009), 29342948. 

11 
F. Xie, On a class of singular boundary value problems with singular perturbation, J. Differential Equations, 252 (2012), 23702387. 

12 
I. A. Tirmizi, F. I. Haq and S. I. Islam, capitalized. Nonpolynomial spline solution of singularly perturbed boundary value problems, Appl. Math. Comput., 196 (2008), 616. 

13 
L. K. Bieniasz, Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations, using nonuniform grids, J. Comput. Methods Sci. Eng., 8 (2008), 318. 

14 
R. K. Mohanty, A class of nonuniform mesh three point arithmetic average discretizations for y"=f(x,y,y') and the estimates of y', Appl. Math. Comput., 183 (2006), 477485. 

15 
A. Khan, I. Khan and T. Aziz, Sextic spline solution of a singularly perturbed boundary value problems, Appl. Math. Comput., 181 (2006), 432439. 

16 
M. K. Kadalbajoo and R. K. Bawa, Variable mesh difference scheme for singularly perturbed boundary value problems using splines, J. Optim. Theory Appl., 90 (1996), 405416. 

17 
M. C. Natividad and M. Stynes, Richardson extrapolation for a convectiondiffusion problem using a Shishkin mesh, Appl. Numer. Math., 45 (2003), 315329. 

18 
C. E. Pearson, On nonlinear ordinary differential equations of boundary layer type, J. Math. Phy., 47 (1968), 351358. 

19 
M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed nonlinear two point boundary value problems by spline in compression, Int. J. Comput. Math., 79 (2002), 271288. 

Go to top
