`a`

$L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems

Pages: 335 - 344, Issue special, November 2013

 Abstract        References        Full Text (411.9K)          

Sachiko Ishida - Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan (email)

1 H. Amann, "Linear and Quasi-linear Parabolic Problems, Volume I, Abstract Linear Theory'', Birkhäuser, Basel, 1995.       
2 S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations, 252 (2012), 1421-1440.       
3 S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations 252 (2012), 2469-2491.       
4 S. Ishida, T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems, submitted.
5 T. Kawanago, Existence and behavior of solutions for $u_t=\Delta(u^m)+u^l$, Adv. Math. Sci. Appl. 7 (1997), 367-400.       
6 E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970), 399-415.
7 S. Luckhaus, Y. Sugiyama, Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems, M2AN Math. Model. Numer. Anal. 40 (2006), 597-621.       
8 S. Luckhaus, Y. Sugiyama, Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases, Indiana Univ. Math. J. 56 (2007), 1279-1297.       
9 Y. Sugiyama, Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differential Integral Equations 20 (2007), 133-180.       
10 Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), 333-364.       
11 R. Suzuki, Existence and nonexistence of global solutions to quasilinear parabolic equations with convection, Hokkaido Mathematical Journal 27 (1998), 147-196.       

Go to top