`a`

Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator

Pages: 247 - 257, Issue special, November 2013

 Abstract        References        Full Text (165.9K)          

Charles Fulton - Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, 32901-6975, United States (email)
David Pearson - Department of Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom (email)
Steven Pruess - 1133 N Desert Deer Pass, Green Valley, Arizona 85614-5530, United States (email)

1 M. Appell, Sur la transformation des équations différentielles linéaires, Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 211-214.
2 F.V. Atkinson, "Discrete and Continuous Boundary Problems," Academic Press, N.Y., 1964.       
3 M.S.P. Eastham, "The Spectral Theory of periodic differential equations," Scottish Academic Press, London, 1973.       
4 C.T. Fulton, D.B. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems, J. Comput. Appl. Math (2008) 212 (2), pp. 194-213.       
5 C.T. Fulton, D.B. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm-Liouville problems, J. Comput. Appl. Math (2008) 212 (2), pp. 150-178.       
6 C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint, arXiv:1303.5878.
7 C.T. Fulton, D.B. Pearson, and S. Pruess, Titchmarsh-Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions, in "Advances in nonlinear analysis: theory, methods and applications," (ed. S. Sivasundaram), Math Probl. Eng. Aerosp. Sci., 3, Camb. Sci. Publ.,(2009), 165-172.       
8 B. Simon, "Szegö's Theorem and Its Descendants," Princeton University Press, Princeton, 2011.       
9 G. Stolz and R. Weikard, "Notes of Seminar on Jacobi Matrices," Dept of Mathematics, University of Alabama, Birmingham, Jan. 2004.
10 G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, Vol 72, Amer. Math. Soc., 2000.       

Go to top