`a`

Abstract theory of variational inequalities and Lagrange multipliers

Pages: 237 - 246, Issue special, November 2013

 Abstract        References        Full Text (324.2K)          

Takeshi Fukao - Department of Mathematics, Kyoto University of Education, Fuji 1, Fukakusa Fushimi-ku, Kyoto 612-8522, Japan (email)
Nobuyuki Kenmochi - Department of Education, School of Education, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto, 603-8301, Japan (email)

1 V. Barbu and Th. Precupanu, Convexity and optimization in Banach space, D. Reidel Publishing Company, Dordrecht, 1986.       
2 H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9), 51(1972), 1-168.       
3 H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps, C. R. Acad. Sci. Paris, 274(1972), 310-313.       
4 H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.       
5 E. Ginder, Construction of solutions to heat-type problems with time-dependent volume constraints, Adv. Math. Sci. Appl., 20(2010), 467-482.       
6 E. Ginder and K. Švadlenka, The discrete Morse flow for volume-controlled membrane motions, Adv. Math. Sci. Appl., 22(2012), 1-19.       
7 A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition, Adv. Math. Sci. Appl., 17(2007), 337-356.       
8 K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, 2008.       
9 D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, (1980).       
10 N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, M. Chipot (Ed.), Handbook of differential equations: Stationary partial differential equations, Vol.4, North-Holland, Amsterdam (2007), 203-298.       
11 N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, The Bull. Fac. Education, Chiba Univ., 30(1981), 1-86.
12 M. Kubo, The Cahn-Hilliard equation with time-dependent constraint, Nonlinear Anal., 75(2012), 5672-5685.       
13 M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, shocks and dry friction, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1993.       
14 K. Švadlenka and S. Omata, Mathematical modelling of surface vibration with volume constraint and its analysis, Nonlinear Anal., 69(2008), 3202-3212.       
15 Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23(1976), 491-515.       
16 N. Yamazaki, A. Ito and N. Kenmochi, Global attractors of time-dependent double obstacle problems, pp. 288-301 in Functional analysis and global analysis, Springer, Singapore, 1997.       

Go to top