`a`

A reinjected cuspidal horseshoe

Pages: 227 - 236, Issue special, November 2013

 Abstract        References        Full Text (3066.0K)          

Marcus Fontaine - Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton, United States (email)
William D. Kalies - Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton, United States (email)
Vincent Naudot - Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton, United States (email)

1 Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst. 8, (2009), 757-789.       
2 P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three, Ann. Fac. Sci. Toulouse. Math. 6, (8), (2001), no. 4, 595-617.       
3 S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, Journ. Dynamics and Diff. Eq., 2, (1990), 177-244.       
4 S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics, SIAM J. Appl. Dyn. Syst. 7, (2008), 1477-1506.       
5 B. Deng Homoclinic twisting bifurcation and cusp horseshoe maps, J. Dyn. Diff.Eq. 5, (1993), 417-467.       
6 S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification, EQUADIFF 2003, 157-162.       
7 M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7, (1997), 221-228.       
8 M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Lect. Notes Math. 583 Springer 1977.       
9 A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields, Memoirs A.M.S. 578, (1996).       
10 A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Sys. 14 (1994), 667-693.       
11 W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence, Found. Comput. Math. 5, (2005), 409-449.       
12 M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields, Journ. Dynamics and Diff. Eq. 5, (1993), 305-357.       
13 J. Moser. Stable and Random Motions in Dynamical Systems, Annals of Math. Studies. Princeton University Press, 1973.       
14 V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Syst. 16, (1996), 1071-1086.       
15 V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois, Thèse de l'Université de Bourgogne, Dijon (1996).
16 V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields, Dyn. Syst. 23, (2008), no. 4, 467-489.       
17 J. Palis, F. Takens. "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'', Cambridge University Press 1993.       
18 J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution, Springer Verlag 1982.       
19 M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I, Ergod. Th. & Dynam. Syst. 10, (1990), 793-821.       
20 S. Smale, Differential dynamical systems, Bull. Am. Math. Soc. 73, (1967), 747-817.       

Go to top