`a`

Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity

Pages: 197 - 206, Issue special, November 2013

 Abstract        References        Full Text (334.2K)          

Priyanjana M. N. Dharmawardane - Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan (email)

1 P. M. N. Dharmawardane, Global solutions and decay property of regularity-loss type for quasi-linear hyperbolic systems with dissipation, J. Hyperbolic Differ. Equ. 10 (2013), 37-76.       
2 P. M. N. Dharmawardane, T. Nakamura and S. Kawashima, Decay estimates of solutions for quasi-linear hyperbolic systems of viscoelasticity, SIAM J. Math. Anal. 44 (2012), 1976-2001.       
3 P. M. N. Dharmawardane, T. Nakamura and S. Kawashima, Global solutions to quasi-linear hyperbolic systems of viscoelasticity, Kyoto J. Math. 51 (2011), 467-483.       
4 P. M. N. Dharmawardane, J. E. Muñoz Rivera and S. Kawashima, Decay property for second order hyperbolic systems of viscoelastic materials, J. Math. Anal. Appl. 366 (2010), 621-635.       
5 T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Methods Appl. Sci. 16 (2006), 1839-1859.       
6 T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), 273-294.       
7 K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Models Methods Appl. Sci. 18 (2008), 647-667.       
8 K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Meth. Appl. Sci. 18 (2008), 1001-1025.       
9 Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation, Discrete Continuous Dynamical Systems, A 29 (2011), 1113-1139.       
10 Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation, Kinetic and Related Models, 4 (2011), 531-547.       
11 Y. Liu and S. Kawashima, Decay property for the Timoshenko system with memory-type dissipation, Math. Models Meth. Appl. Sci. 22 (2012), 1150012, 19 pp.       
12 A. Matsumura, An energy method for the equations of motion of compressible viscous and heat-conductive fluids, MRC Technical Summary Report, Univ. of Wisconsin-Madison \#2194 (1981).
13 J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math. 52 (1994), 628-648.       
14 J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl. 286 (2003), 692-704.       
15 Y. Ueda and S. Kawashima, Decay property of regularity-loss type for the Euler-Maxwell system, Methods Appl. Anal. 18 (2011), 245-267.       

Go to top