`a`

New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies

Pages: 105 - 113, Issue special, November 2013

 Abstract        References        Full Text (322.3K)          

Dmitriy Chebanov - Department of Mathematics, Engineering, and Computer Science, City University of New York, LaGCC, Long Island City, NY 11101, United States (email)

1 D. Bobylev, On a certain particular solution of the differential equations of rotation of a heavy rigid body about a fixed point, Trudy Otdel. Fiz. Nauk Obsc. Estestvozn., 8 (1896), 21-25.
2 A.V. Borisov and I.S. Mamaev, "Dynamics of a rigid body. Hamiltonian methods, integrability, chaos," Institute of Computer Science, Moscow - Izhevsk, 2005.       
3 D.A. Chebanov, On a generalization of the problem of similar motions of a system of Lagrange gyroscopes, Mekh. Tverd. Tela, 27 (1995), 57-63.       
4 D.A. Chebanov, New dynamical properties of a system of Lagrange gyroscopes, Proceedings of the Institute of Applied Mathematics and Mechanics, 5 (2000), 172-182.       
5 D. Chebanov, Exact solutions for motion equations of symmetric gyros system, Multibody Syst. Dyn., 6 (2001), 39-57.       
6 D.A. Chebanov, A new class of nonstationary motions of a system of heavy Lagrange tops with a non-planar configuration of the systems's skeleton, Mekh. Tverd. Tela, 41 (2011), 244-254.
7 L. Euler, Du mouvement de rotation des corps solides autour d'un axe variable, Memoires de l'Academie des Sciences de Berlin, XIV (1765), 154-193.
8 G.V. Gorr, Precessional motions in rigid body dynamics and the dynamics of systems of coupled rigid bodies, J. Appl. Math. Mech., 67 (2003), 511-523.       
9 G.V. Gorr, L.V. Kudryashova, and L.A. Stepanova, "Classical problems in the theory of solid bodies. Their development and current state," Naukova dumka, Kiev, 1978.       
10 G.V. Gorr and V.N. Rubanovskii, A new class of motions of a system of heavy freely connected rigid bodies, J. Appl. Math. Mech., 52 (1988), 551-555.       
11 P.V. Kharlamov, The equations of motion of a system of rigid bodies, Mekh. Tverd. Tela, 4 (1972), 52-73.
12 P.V. Kharlamov, Some classes of exact solutions of the problem of the motion of a system of Lagrange gyroscopes, Mat. Fiz., 32 (1982), 63-76.       
13 E.I. Kharlamova, A survey of exact solutions of problems of the motion of systems of coupled rigid bodies, Mekh. Tverd. Tela, 26 (1998), 125-138.       
14 S.V. Kovalevskaya, Sur le probleme de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12 (1889), 177-232.       
15 J.L. Lagrange, "Mechanique Analitique," Veuve Desaint, Paris, 1815.       
16 E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about Fixed Point," Springer-Verlag, Berlin, 1965.
17 L. Lilov and N. Vasileva, Steady motion of a system of Lagrange gyroscopes with a tree structure, Teoret. Prilozhna Mekh., XV (1984), 24-34.       
18 A.Ya. Savchenko and M.E. Lesina, Particular solution for motion equations of Lagrange gyroscopes system, Mekh. Tverd. Tela, 5 (1973), 27-30.
19 N. Sreenath, Y.G. Oh, P.S. Krishnaprasad, and J.E. Marsden, The dynamics of coupled planar rigid bodies. Part I: Reduction, equilibria and stability, Dynam. Stability Systems, 3 (1988), 25-49.       
20 V.A. Steklov, A certain case of motion of a heavy rigid body having a fixed point, Trudy Otdel. Fiz. Nauk Obsc. Lyubit. Estestvozn., 8 (1896), 19-21.
21 J. Wittenburg, "Dynamics of Multibody Systems," Springer-Verlag, Berlin, 2008.       

Go to top