`a`

An iterative method for the canard explosion in general planar systems

Pages: 77 - 83, Issue special, November 2013

 Abstract        References        Full Text (329.3K)          

Morten Brøns - Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark (email)

1 E. Benoit, J. L. Callot, F. Diener, and M. Diener. Chasse au canard. Collectanea Mathematica, 32:37-119, 1981.
2 K. M. Beutel and E. Peacock-López. Complex dynamics in a cross-catalytic self-replication mechanism. Journal of Chemical Physics, 126:125104, 2007.
3 M. Brøns. Relaxation oscillations and canards in a nonlinear model of discontinuous plastic deformation in metals at very low temperatures. Proceedings of the Royal Society of London Series A, 461:2289-2302, 2005.       
4 M. Brøns. Canard explosion of limit cycles in templator models of self-replication mechanisms. Journal of Chemical Physics, 134:144105, 2011.
5 M. Brøns and K. Bar-Eli. Asymptotic analysis of canards in the EOE equations and the role of the inflection line. Proceedings of the Royal Society of London Series A, 445:305-322, 1994.
6 M. Brøns and J. Sturis. Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system. Physical Review E, 64:026209, 2001.
7 M. Desroches and M. R: Jeffrey. Canards and curvature: the 'smallness' of $\epsilon$ in slow-fast dynamics. Proceedings of the Royal Society of London Series A, 467:2404-2421, 2011.       
8 W. Eckhaus. Relaxation oscillations including a standard chase on French ducks. In Asymptotic Analysis II, volume 985 of Lecture Notes in Mathematics, pages 449-494. Springer Verlag, New York/Berlin, 1983.
9 S. J. Fraser. The steady state and equilibrium approximations: A geometrical picture. Journal of Chemical Physics, 88(8):4732-4738, 1988.
10 M. Krupa and P. Szmolyan. Relaxation oscillations and canard explosion. Journal of Differential Equations, 174:312-368, 2001.       
11 M. R. Roussel and S. J. Fraser. Geometry of the steady-state approximation: Perturbation and accelerated convergence methods. Journal of Chemical Physics, 93(2):1072-1081, 1990.
12 F. Verhulst. Methods and Applications of Singular Perturbations. Number 50 in Texts in Applied Mathematics. Springer, New York, 2005.
13 A. K. Zvonkin and M. A. Shubin. Non-standard analysis and singular perturbations of ordinary differential equations. Russian Mathematical Surveys, 39(2):77-127, 1984.       

Go to top