Journal of Computational Dynamics (JCD)

On the consistency of ensemble transform filter formulations
Pages: 177 - 189, Issue 1, June 2014

doi:10.3934/jcd.2014.1.177      Abstract        References        Full text (548.7K)           Related Articles

Sebastian Reich - Universität Potsdam, Institut für Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany (email)
Seoleun Shin - Korea Institute of Atmospheric Prediction Systems, 4F Korea Computer Bldg., 35 Boramae-ro 5-gil, Dongjak-gu, Seoul 156-849, South Korea (email)

1 J. Amezcua, E. Kalnay, K. Ide and S. Reich, Ensemble transform Kalman-Bucy filters, Q. J. Royal Meteorological Soc., published online 25. July 2013.
2 J. Anderson and S. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Wea. Rev., 127 (1999), 2741-2758.
3 A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, vol. 60 of Stochastic modelling and applied probability, Springer-Verlag, New-York, 2009.       
4 K. Bergemann, G. Gottwald and S. Reich, Ensemble propagation and continuous matrix factorization algorithms, Q. J. R. Meteorological Soc., 135 (2009), 1560-1572.
5 K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters, Q. J. R. Meteorological Soc., 136 (2010), 701-707.
6 K. Bergemann and S. Reich, A mollified ensemble Kalman filter, Q. J. R. Meteorological Soc., 136 (2010), 1636-1643.
7 K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation, Meteorolog. Zeitschrift, 21 (2012), 213-219.
8 D. Crisan and J. Xiong, Approximate McKean-Vlasov representation for a class of SPDEs, Stochastics, 82 (2010), 53-68.       
9 D. Crisan and J. Xiong, Numerical solution for a class of SPDEs over bounded domains, Stochastics, published online 02 September 2013.
10 G. Evensen, Data Assimilation. The Ensemble Kalman Filter, Springer-Verlag, New York, 2006.       
11 A. Jazwinski, Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.
12 J. Lei and P. Bickel, A moment matching ensemble filter for nonlinear and non-Gaussian data assimilation, Mon. Weath. Rev., 139 (2011), 3964-3973.
13 E. Lorenz, Deterministic non-periodic flows, J. Atmos. Sci., 20 (1963), 130-141.
14 S. Reich, A dynamical systems framework for intermittent data assimilation, BIT Numer Math, 51 (2011), 235-249.       
15 S. Reich, A Gaussian mixture ensemble transform filter, Q. J. R. Meterolog. Soc., 138 (2012), 222-233.
16 M. Tippett, J. Anderson, G. Bishop, T. Hamill and J. Whitaker, Ensemble square root filters, Mon. Wea. Rev., 131 (2003), 1485-1490.
17 C. Villani, Topics in Optimal Transportation, American Mathematical Society, Providence, Rhode Island, NY, 2003.       
18 X. Xiong, I. Navon and B. Uzungoglu, A note on the particle filter with posterior Gaussian resampling, Tellus, 58 (2006), 456-460.
19 T. Yang, P. Mehta and S. Meyn, Feedback particle filter, IEEE Trans. on Automatic Control, 58 (2013), 2465-2480.       

Go to top