Networks and Heterogeneous Media (NHM)

A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function
Pages: 191 - 196, Issue 1, March 2014

doi:10.3934/nhm.2014.9.191      Abstract        References        Full text (317.1K)           Related Articles

Boris Muha - Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia (email)

1 R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.       
2 A. Chambolle, B. Desjardins, M. J. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, J. Math. Fluid Mech., 7 (2005), 368-404.       
3 C. H. A. Cheng and S. Shkoller, The interaction of the 3D Navier-Stokes equations with a moving nonlinear Koiter elastic shell, SIAM J. Math. Anal., 42 (2010), 1094-1155.       
4 S. Čanić and B. Muha, A nonlinear moving-boundary problem of parabolic-hyperbolic-hyperbolic type arising in fluid-multi-layered structure interaction problems, to appear in Proceedings of the Fourteenth International Conference on Hyperbolic Problems: Theory, Numerics and Applications, American Institute of Mathematical Sciences (AIMS) Publications.
5 Z. Ding, A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. Amer. Math. Soc., 124 (1996), 591-600.       
6 C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate, SIAM J. Math. Anal., 40 (2008), 716-737.       
7 P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.       
8 I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem, DCDS-A, 32 (2012), 1355-1389.       
9 D. Lengeler and M. Ružička, Weak solutions for an incompressible newtonian fluid interacting with a linearly elastic koiter shell, Arch. Ration. Mech. Anal., 211 (2014), 205-255.       
10 J. Lequeurre, Existence of strong solutions for a system coupling the Navier-Stokes equations and a damped wave equation, J. Math. Fluid Mech., 15 (2013), 249-271.       
11 J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York, 1972.       
12 B. Muha and S. Čanić, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Arch. Ration. Mech. Anal., 207 (2013), 919-968.       
13 B. Muha and S. Čanić, Existence of a solution to a fluid-multi-layered-structure interaction problem, J. of Diff. Equations, 256 (2014), 658-706.       

Go to top