`a`
Networks and Heterogeneous Media (NHM)
 

Motion of discrete interfaces in low-contrast periodic media
Pages: 169 - 189, Issue 1, March 2014

doi:10.3934/nhm.2014.9.169      Abstract        References        Full text (434.4K)           Related Articles

Giovanni Scilla - Dipartimento di Matematica 'G. Castelnuovo', 'Sapienza' Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy (email)

1 F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Diff. Geom., 42 (1995), 1-22.       
2 F. Almgren, J. E. Taylor and L. Wang, Curvature driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.       
3 A. Braides, Approximation of Free-Discontinuity Problems, Lecture notes in Mathematics, 1694, Springer-Verlag, Berlin, 1998.       
4 A. Braides, Local Minimization, Variational Evolution and $\Gamma$-Convergence, Lecture Notes in Mathematics, 2094, Springer Verlag, Berlin, 2014.       
5 A. Braides, M. S. Gelli and M. Novaga, Motion and pinning of discrete interfaces, Arch. Ration. Mech. Anal., 195 (2010), 469-498.       
6 A. Braides and G. Scilla, Motion of discrete interfaces in periodic media, Interfaces Free Bound., 15 (2013), 451-476.       
7 C. Conca, J. San Martín, L. Smaranda and M. Vanninathan, On Burnett coefficients in periodic media in low contrast regime, J. Math. Phys., 49 (2008), 053514, 23 pp.       
8 G. W. Milton, The Theory of Composites, Cambridge University Press, 2002.       
9 J. E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points, Differential Geometry, Proceedings of Symposia in Pure Math., 51 (1993), 417-438.       

Go to top