Numerical network models and entropy principles for isothermal junction flow
Pages: 65  95,
Issue 1,
March
2014
doi:10.3934/nhm.2014.9.65 Abstract
References
Full text (1803.6K)
Related Articles
Gunhild A. Reigstad  Dept. of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO7491 Trondheim, Norway (email)
1 
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 4156. 

2 
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295314. 

3 
M. K. Banda, M. Herty and J.M. T. Ngnotchouye, Toward a mathematical analysis for driftflux multiphase flow models in networks, SIAM J. Sci. Comput., 31 (2010), 46334653. 

4 
M. K. Banda, M. Herty and J.M. T. Ngnotchouye, Coupling driftflux models with unequal sonic speeds, Math. Comput. Appl., 15 (2010), 574584. 

5 
J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601623. 

6 
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 18621886. 

7 
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$system at a junction, Netw. Heterog. Media, 1 (2006), 495511. 

8 
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$system at a junction, SIAM J. Math. Anal., 39 (2008), 14561471. 

9 
R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605622. 

10 
R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547568. 

11 
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, SpringerVerlag, 2010. 

12 
M. Garavello, A review of conservation laws on networks, Netw. Heterog. Media, 5 (2010), 565581. 

13 
M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 15961612. 

14 
M. Herty and M. Seaïd, Simulation of transient gas flow at pipetopipe intersections, Netw. Heterog. Media, 56 (2008), 485506. 

15 
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 9991017. 

16 
S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, Int. J. Numer. Meth. Fluids, 65 (2011), 707742. 

17 
T. Kiuchi, An implicit method for transient gas flows in pipe networks, Int. J. Heat and Fluid Flow, 15 (1994), 378383. 

18 
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 6th edition, Cambridge University Press, 2007. 

19 
A. Osiadacz, Simulation of transient gas flows in networks, Int. J. Numer. Meth. Fluids, 4 (1984), 1324. 

20 
R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Twodimensional simulation of wave propagation in a threepipe junction, J. Eng. Gas Turbines Power, 122 (2000), 549555. 

21 
J. PérezGarcía, E. SanmiguelRojas, J. HernándezGrau and A. Viedma, Numerical and experimental investigations on internal compressible flow at Ttype junctions, Experimental Thermal and Fluid Science, 31 (2006), 6174. 

22 
G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, Submitted, (2013). Preprint available from: http://www.math.ntnu.no/conservation/2013/007.html. 

23 
P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43 (1981), 357372. 

24 
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, SpringerVerlag, 2009. 

Go to top
