`a`
Networks and Heterogeneous Media (NHM)
 

Numerical network models and entropy principles for isothermal junction flow
Pages: 65 - 95, Issue 1, March 2014

doi:10.3934/nhm.2014.9.65      Abstract        References        Full text (1803.6K)                  Related Articles

Gunhild A. Reigstad - Dept. of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway (email)

1 M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.       
2 M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314.       
3 M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks, SIAM J. Sci. Comput., 31 (2010), 4633-4653.       
4 M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds, Math. Comput. Appl., 15 (2010), 574-584.       
5 J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks, Multiscale Model. Simul., 9 (2011), 601-623.       
6 G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886.       
7 R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.       
8 R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.       
9 R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.       
10 R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction, J. Hyperbol. Differ. Eq., 5 (2008), 547-568.       
11 C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edition, Springer-Verlag, 2010.       
12 M. Garavello, A review of conservation laws on networks, Netw. Heterog. Media, 5 (2010), 565-581.       
13 M. Herty, Coupling conditions for networked systems of Euler equations, SIAM J. Sci. Comput., 30 (2008), 1596-1612.       
14 M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, Netw. Heterog. Media, 56 (2008), 485-506.       
15 H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.       
16 S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, Int. J. Numer. Meth. Fluids, 65 (2011), 707-742.       
17 T. Kiuchi, An implicit method for transient gas flows in pipe networks, Int. J. Heat and Fluid Flow, 15 (1994), 378-383.
18 R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, 6th edition, Cambridge University Press, 2007.       
19 A. Osiadacz, Simulation of transient gas flows in networks, Int. J. Numer. Meth. Fluids, 4 (1984), 13-24.
20 R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction, J. Eng. Gas Turbines Power, 122 (2000), 549-555.
21 J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions, Experimental Thermal and Fluid Science, 31 (2006), 61-74.
22 G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, Submitted, (2013). Preprint available from: http://www.math.ntnu.no/conservation/2013/007.html.
23 P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43 (1981), 357-372.       
24 E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, Springer-Verlag, 2009.       

Go to top