The uniform attractor of a multivalued process generated by
reactiondiffusion delay equations on an unbounded domain
Pages: 4343  4370,
Issue 10,
October
2014
doi:10.3934/dcds.2014.34.4343 Abstract
References
Full text (468.2K)
Related Articles
Yejuan Wang  School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China (email)
Peter E. Kloeden  Institut für Mathematik, Goethe Universität, D60054 Frankfurt am Main, Germany (email)
1 
T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, SetValued Anal., 11 (2003), 153201. 

2 
T. Caraballo and J. Real, Attractors for 2DNavierStokes models with delays, J. Differential Equations, 205 (2004), 271297. 

3 
T. Caraballo, P. MarínRubio and J. Valero, Autonomous and nonautonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 941. 

4 
T. Caraballo, M. J. GarridoAtienza, B. Schmalfuss and J. Valero, Nonautonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415443. 

5 
T. Caraballo, M. J. GarridoAtienza, B. Schmalfuss and J. Valero, Global attractors for a nonautonomous integrodifferential equation in materials with memory, Nonlinear Anal., 73 (2010), 183201. 

6 
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002. 

7 
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, SpringerVerlag, 1993. 

8 
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Roy. Soc. London, 463 (2007), 163181. 

9 
P. E. Kloeden and B. Schmalfuss, Asymptotical behaviour of nonautonomous difference inclusions, Syst. Cont. Lett., 33 (1998), 275280. 

10 
D. S. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions, J. Differential Equations, 224 (2006), 138. 

11 
D. S. Li, Y. J. Wang and S. Y. Wang, On the dynamics of nonautonomous general dynamical systems and differential inclusions, SetValued Anal., 16 (2008), 651671. 

12 
S. S. Lu, H. Q. Wu and C. K. Zhong, Attractors for nonautonomous 2D NavierStokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701719. 

13 
Q. F. Ma, S. H. Wang and C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 15411559. 

14 
J. MalletParet and G. R. Sell, Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions, J. Differential Equations, 125 (1996), 385440. 

15 
J. MalletParet and G. R. Sell, The PoincaréBendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations, 125 (1996), 441489. 

16 
P. MarínRubio and J. Real, Pullback attractors for 2DNavierStokes equations with delay in continuous and sublinear operators, Discrete Contin. Dyn. Syst., 26 (2010), 9891006. 

17 
F. Morillas and J. Valero, Attractors for reactiondiffusion equations in $\mathbbR^N$ with continuous nonlinearity, Asymptotic Anal., 44 (2005), 111130. 

18 
R. Temam, Infinite Dimensional Dynamical System in Mechanics and Physics, Second edition, SpringerVerlag, New York, 1997. 

19 
M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the threedimensional NavierStokes systems, Math. Notes, 71 (2002), 177193; translated from Mat. Zametki, 71 (2002), 194213. 

20 
Y. J. Wang and S. F. Zhou, Kernel sections and uniform attractors of multivalued semiprocesses, J. Differential Equations, 232 (2007), 573622. 

21 
Y. J. Wang and S. F. Zhou, Kernel sections of multivalued processes with application to the nonlinear reactiondiffusion equations in unbounded domains, Quart. Applied Math., 67 (2009), 343378. 

22 
Y. J. Wang, On the upper semicontinuity of pullback attractors for multivalued processes, Quart. Applied Math., 71 (2013), 369399. 

Go to top
