`a`
The Journal of Geometric Mechanics (JGM)
 

A Hamilton-Jacobi theory on Poisson manifolds
Pages: 121 - 140, Issue 1, March 2014

doi:10.3934/jgm.2014.6.121      Abstract        References        Full text (443.8K)           Related Articles

Manuel de León - Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), c\ Nicolás Cabrera, n 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain (email)
David Martín de Diego - Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), c\ Nicolás Cabrera, n 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain (email)
Miguel Vaquero - Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), c\ Nicolás Cabrera, n 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain (email)

1 R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin-Cummings, Reading (Ma), 1978.       
2 V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.       
3 P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics: Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918.       
4 L. Bates and J. Sniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.       
5 F. Cantrijn, Vector fields generating invariants for classical dissipative systems, J. Math. Phys., 23 (1982), 1589-1595.       
6 F. Cantrijn, M. de León and D. Martín de Diego, On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, 12 (1999), 721-737.       
7 J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 1417-1458.       
8 J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 431-454.       
9 C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969.       
10 M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints, Journal of Mathematical Physics, 53 (2012), 072905 (29 pages).       
11 M. de León, D. Iglesias-Ponte and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, Journal of Physics A: Math. Gen., 41 (2008), 015205, 14 pp.       
12 M. de León, J. C. Marrero and D. Martín de Diego, A geometric Hamilton-Jacobi theory for classical field theories, In: Variations, geometry and physics, 129-140, Nova Sci. Publ., New York, (2009).       
13 M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.       
14 M. de León, D. Martín de Diego, J. C. Marrero, M. Salgado and S. Vilariño, Hamilton-Jacobi theory in $k$-symplectic field theories, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 1491-1507.       
15 M. de León, J. C. Marrero, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems, J. Math. Phys., 54 (2013), 032902, 32 pp.       
16 M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems in the Skinner and Rusk setting, Int. J. Geom. Meth. Mod. Phys., 9 (2012), 1250074, 24 pp.       
17 M. de León, D. Martín de Diego, C. Martínez-Campos and M. Vaquero, A Hamilton-Jacobi theory in infinite dimensional phase spaces, In preparation.
18 M. de León and P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.       
19 P. Libermann and Ch.M- Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987.       
20 J. C. Marrero and D. Sosa, The Hamilton-Jacobi equation on Lie affgebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 605-622.       
21 T. Oshawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equations and integrability, J. Geom. Mech., 1 (2009), 461-481.       
22 H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Hazell, Watson and Viney Ltd., Aylesbury, Buckinghamshire, U.K. 1966.
23 I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118. Birkhäuser Verlag, Basel, 1994.       
24 A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233.       

Go to top