The Journal of Geometric Mechanics (JGM)

Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes
Pages: 39 - 66, Issue 1, March 2014

doi:10.3934/jgm.2014.6.39      Abstract        References        Full text (571.1K)           Related Articles

Henry Jacobs - Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (email)
Joris Vankerschaver - Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom (email)

1 R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, American Mathematical Society, 2000.
2 R. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, vol. 75 of Applied Mathematical Sciences, 3rd edition, Spinger, 2009.
3 V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'Institut Fourier, 16 (1966), 316-361.       
4 V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, vol. 24 of Applied Mathematical Sciences, 125. Springer-Verlag, New York, 1998.       
5 G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1999.       
6 H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian Reduction by Stages, Mem. Amer. Math. Soc., 152 (2001), x+108 pp.       
7 R. L. Fernandes and I. Struchiner, Lie algebroids and classification problems in geometry, São Paulo J. Math. Sci., 2 (2008), 263-283.       
8 E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D: Nonlinear Phenomena, 240 (2011), 1724-1760.       
9 F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Advances in Applied Mathematics, 42 (2009), 176-275.       
10 E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure Preserving Algorithms for Ordinary Differential Equations, vol. 31 of Series in Computational Mathematics, Springer Verlag, 2002.       
11 H. O. Jacobs, T. S. Ratiu and M. Desbrun, On the coupling between an ideal fluid and immersed particles, Phys. D, 265 (2013), 40-56. arXiv:1208.6561v1       
12 E. Kanso, J. E. Marsden, C. W. Rowley and J. B. Melli-Huber, Locomotion of articulated bodies in a perfect fluid, Journal of Nonlinear Science, 15 (2005), 255-289.       
13 S. D. Kelly, The Mechanics and Control of Robotic Locomotion with Applications to Aquatic Vehicles, PhD thesis, California Institute of Technology, 1998.       
14 S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, John Wiley & Sons, 1963.       
15 I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.       
16 H. Lamb, Hydrodynamics, Reprint of the 1932 Cambridge University Press edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993.       
17 T. Lee, M. Leok and N. H. McClamroch, Computational geometric optimal control of rigid bodies, Communications in Information and Systems, 8 (2008), 445-472.       
18 D. Lewis, J. E. Marsden, R. Montgomery and T. S. Ratiu, The Hamiltonian structure for dynamic free boundary problems, Phys. D, 18 (1986), 391-404.       
19 J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.       
20 J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Corrected reprint of the 1983 original. Dover Publications, Inc., New York, 1994.       
21 J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum, ZAMP, 44 (1993), 17-43.       
22 J. E. Marsden and J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Communications, 1 (1993), 139-164.       
23 J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.       
24 J. E. Radford, Symmetry, Reduction and Swimming in a Perfect Fluid, PhD thesis, California Institute of Technology, 2003.
25 G. Schwarz, Hodge Decomposition-A Method for Solving Boundary Value Problems, vol. 1607 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1995.       
26 A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number, Journal of Fluid Mechanics, 198 (1989), 557-585.       
27 M. Troyanov, On the Hodge decomposition in $\mathbbR^n$, Mosc. Math. J., 9 (2009), 899-926, 936.       
28 J. Vankerschaver, E. Kanso and J. E. Marsden, The geometry and dynamics of interacting rigid bodies and point vortices, Journal of Geometric Mechanics, 1 (2009), 223-266.       
29 J. Vankerschaver, E. Kanso and J. E. Marsden, The dynamics of a rigid body in potential flow with circulation, Reg. Chaot. Dyn., 15 (2010), 606-629.       
30 A. Weinstein, Lagrangian mechanics and groupoids, in Mechanics Day, 207-231, Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996.       

Go to top