`a`
The Journal of Geometric Mechanics (JGM)
 

Andoyer's variables and phases in the free rigid body
Pages: 25 - 37, Issue 1, March 2014

doi:10.3934/jgm.2014.6.25      Abstract        References        Full text (981.0K)           Related Articles

Sebastián Ferrer - Departamento de Matemática Aplicada, Universidad de Murcia, 30100 Espinardo, Spain (email)
Francisco J. Molero - Departamento de Matemática Aplicada, Universidad de Murcia, Murcia, 30071 Espinardo, Spain (email)

1 M. H. Andoyer, Cours de Mécanique Céleste, The Mathematical Gazette, 12 (1924), p. 30.
2 L. Bates, R. Cushman and E. Savev, The rotation number and the herpolhode angle in Eulers top, Z. angew. Math. Phys., 56 (2005), 183-191.       
3 A. V. Borisov, A. A. Kilin and I. S. Mamaev, Absolute and Relative Choreographies in Rigid Body Dynamics, Regular and Chaotic Dynamics, 13 (2008), 204-220. Available from: http://ics.org.ru/doc?pdf=1279&dir=e       
4 R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, Birhäuser Verlag, Basel, 1997.       
5 A. Deprit, Free rotation of a rigid body studied in the phase space, American Journal of Physics, 35 (1967), 424-428.
6 F. Fassò, The EulerPoinsot top: A non-commutatively integrable system without global action-angle coordinates, J. Appl. Math. Phys. (ZAMP), 47 (1996), 953-976.       
7 T. Fukushima, Precise and fast computation of a general incomplete elliptic integral of third kind by half and double argument transformations, Journal of Computational and Applied Mathematics, 236 (2012), 1961-1975.       
8 W. B. Heard, Rigid Body Mechanics. Mathematics, Physics and Applications, WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2006.
9 D. D. Holm and J. E. Marsden, The rotor and the pendulum, in Symplectic Geometry and Mathematical Physics. Actes du colloque en l'honneur de Jean-Marie Souriau, Ed. by P. Donato et al., Prog. in Math., 99 (1991), Birkhäuser, 189-203. Available from: http://www.cds.caltech.edu/~marsden/bib/1991/06-HoMa1991/HoMa1991.pdf.       
10 D. F. Lawden, Elliptic Functions and Applications, Springer-Verlag, New York, 1989.       
11 M. Levi, Geometric phases in the motion of rigid bodies, Archive for Rational Mechanics and Analysis, 122 (1993), 213-229.       
12 M. Levi, Lectures on geometrical methods in mechanics, in Classical and Celestial Mechanics, 239-280, Princeton Univ. Press, Princeton, NJ, 2002.       
13 J. E. Marsden, Geometric foundations of motion and control, in Motion, Control, and Geometry: Proceedings of a Symposium, Nonlinear Sci. Today 1996, 21 pp.       
14 J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, Springer, New York, Second Ed., 1999.       
15 R. Montgomery, How much does the rigid body rotate? A Berry's phase from the $18^{th}$ century, American Journal of Physics, 59 (1991), 394-398. Available from: http://montgomery.math.ucsc.edu/papers/rigid_body.pdf       
16 R. Natário, An elementary derivation of the Montgomery phase formula for the Euler Top, Journal of Geometric Mechanics, 2 (2010), 113-118. arXiv:0909.2109v3       
17 J. P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222. Birkhäuser Boston, Inc., Boston, MA, 2004.       
18 P. Tantalo, Geometric Phases for the Free Rigid Body with Variable Inertia Tensor, Ph.D thesis, University of California in Santa Cruz, 1993.       
19 S. Wolfram, Wolfram Mathematica 9, Wolfram Research Inc./Cambridge Univ. Press, Cambridge, 2003, http://reference.wolfram.com/mathematica/guide/Mathematica.html.
20 V. F. Zhuravlev, The solid angle theorem in rigid body dynamics, J. Appl. Maths. Mechs., 60 (1996), 319-322.       

Go to top