On a threeComponent CamassaHolm equation with peakons
Pages: 305  339,
Issue 2,
June
2014
doi:10.3934/krm.2014.7.305 Abstract
References
Full text (529.8K)
Related Articles
Yongsheng Mi  College of Mathematics and and Statistics, Chongqing University, Chongqing, 401331, China (email)
Chunlai Mu  College of Mathematics and and Statistics, Chongqing University, Chongqing 401331, China (email)
1 
M. Baouendi and C. Goulaouic, Remarks on the abstract form of nonlinear CauchyKowalevski theorems, Commun. Partial Differential Equation, 2 (1977), 11511162. 

2 
M. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems, J. Differential Equations, 48 (1983), 241268. 

3 
A. Bressan and A. Constantin, Global conservative solutions of the CamassaHolm equation, Arch. Ration. Mech. Anal., 183 (2007), 215239. 

4 
A. Bressan and A. Constantin, Global dissipative solutions of the CamassaHolm equation, Anal. Appl., 5 (2007), 127. 

5 
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 16611664. 

6 
J. Chemin, Localization in Fourier space and NavierStokes system, Phase Space Analysis of Partial Differential Equations. Proceedings, CRM series, Pisa, (2004), 53135. 

7 
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321362. 

8 
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523535. 

9 
A. Constantin, On the inverse spectral problem for the CamassaHolm equation, J. Funct. Anal., 155 (1998), 352363. 

10 
A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423431. 

11 
A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559568. 

12 
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229243. 

13 
A. Constantin and J. Escher, On the blowup rate and the blowup set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 7591. 

14 
A. Constantin and J. Escher, Global existence and blowup for a shallow water equation, Ann. Scuola Norm. Sup. Pisa., 26 (1998), 303328. 

15 
A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the CamassaHolm equation, Inverse Problems, 22 (2006), 21972207. 

16 
A. Constantin and R. Ivanov, On an integrable twocomponent CamassaHolm shallow water system, Phys. Lett. A., 372 (2008), 71297132. 

17 
A. Constantin, T. Kappeler, B. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155180. 

18 
A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Commentarii Mathematici Helvetici, 78 (2003), 787804. 

19 
A. Constantin and D. Lannes, The hydrodynamical relevance of the CamassaHolm and DegasperisProcesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165186. 

20 
A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949982. 

21 
A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603610. 

22 
R. Danchin, A few remarks on the CamassaHolm equation, Differential Integral Equations, 14 (2001), 953988. 

23 
R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14 November, 2003. 

24 
R. Dachin, A note on wellposedness for CamassaHolm equation, J. Differential Equations, 192 (2003), 429444. 

25 
J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479508. 

26 
J. Escher and Z. Yin, Initial boundary value problems of the CamassaHolm equation, Commun. Partial Differential Equation, 33 (2008), 377395. 

27 
Y. Fu, G. Gui, Y. Liu and C. Qu, On the Cauchy problem for the integrable CamassaHolm type equation with cubic nonlinearity, arXiv:1108.5368v2. 

28 
Y. Fu, Y. Liu and C. Qu, Wellposedness and blowup solution for a modified twocomponent periodic CamassaHolm system with peakons, Math. Ann., 348 (2010), 415448. 

29 
Y. Fu and C. Qu, Well posedness and blowup solution for a new coupled CamassaHolm equations with peakons, J. Math. Phys., 50 (2009), 012906, 125. 

30 
Y. Fu and C. Qu, On a new ThreeComponent CamassaHolm equation with peakons, Comm. Theor. Phys., 53 (2010), 223230. 

31 
G. Gui and Y. Liu, On the global existence and wavebreaking criteria for the twocomponent CamassaHolm system, J. Funct. Anal., 258 (2010), 42514278. 

32 
G. Gui and Y. Liu, On the Cauchy problem for the twocomponent CamassaHolm system, Math. Z., 268 (2011), 4566. 

33 
A. Himonas and G. Misiolek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575584. 

34 
H. Holden and X. Raynaud, Global conservative solutions of the CamassaHolm equationsa Lagrangianpoiny of view, Comm. Partial Differential Equations, 32 (2007), 15111549. 

35 
H. Holden and X. Raynaud, Dissipative solutions for the CamassaHolm equation, Discrete Contin. Dyn. Syst., 24 (2009), 10471112. 

36 
Q. Hu, L. Lin and J. Jin, Wellposedness and blowup phenomena for a new threecomponent CamassaHolm system with peakons, J. Hyper. Differential Equations, 9 (2012), 451467. 

37 
D. Holm and R. Ivanov, Multicomponent generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A, 43 (2010), 492001, 121. 

38 
D. Holm and R. Ivanov, Twocomponent CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013, 121. 

39 
D. Holm, L. Onaraigh and C. Tronci, Singular solutions of a modified twocomponent CamassaHolm equation, Phys. Rev. E., 79 (2009), 016601, 19. 

40 
S. Kouranbaeva, The CamassaHolm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857868. 

41 
J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151163. 

42 
Y. Li and P. Olver, Wellposedness and blowup solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 2763. 

43 
G. Misiolek, A shallow water equation as a geodesic flow on the BottVirasoro group, J. Geom. Phys., 24 (1998), 203208. 

44 
L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled CamassaHolm equations, J. Math. Phys., 52 (2011), 063702, 29 pp. 

45 
L. Tian and Y. Xu, Attractor for a viscous coupled CamassaHolm equation, Adv. Differ. Equ., (2010), 512812, 30 pp. 

46 
J. F. Toland, Stokes waves, Topol. Methods. Nonlinear Anal., 7 (1996), 148. 

47 
K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for twocomponent shallow water systems, Math. Z., 269 (2011), 11131127. 

48 
M. Zhu and Blowup, Global Existence and Persistence Properties for the Coupled CamassaHolm equations, Math Phys. Anal Geom., 14 (2011), 197209. 

Go to top
