`a`
Kinetic and Related Models (KRM)
 

On a three-Component Camassa-Holm equation with peakons
Pages: 305 - 339, Issue 2, June 2014

doi:10.3934/krm.2014.7.305      Abstract        References        Full text (529.8K)           Related Articles

Yongsheng Mi - College of Mathematics and and Statistics, Chongqing University, Chongqing, 401331, China (email)
Chunlai Mu - College of Mathematics and and Statistics, Chongqing University, Chongqing 401331, China (email)

1 M. Baouendi and C. Goulaouic, Remarks on the abstract form of nonlinear Cauchy-Kowalevski theorems, Commun. Partial Differential Equation, 2 (1977), 1151-1162.       
2 M. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifferential operators and application to the Cauchy problems, J. Differential Equations, 48 (1983), 241-268.       
3 A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.       
4 A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl., 5 (2007), 1-27.       
5 R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.       
6 J. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations. Proceedings, CRM series, Pisa, (2004), 53-135.       
7 A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.       
8 A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.       
9 A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.       
10 A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.       
11 A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.       
12 A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.       
13 A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233 (2000), 75-91.       
14 A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa., 26 (1998), 303-328.       
15 A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.       
16 A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A., 372 (2008), 7129-7132.       
17 A. Constantin, T. Kappeler, B. Kolev and P. Topalov, On geodesic exponential maps of the Virasoro group, Ann. Global Anal. Geom., 31 (2007), 155-180.       
18 A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Commentarii Mathematici Helvetici, 78 (2003), 787-804.       
19 A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.       
20 A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.       
21 A. Constantin and W. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.       
22 R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.       
23 R. Danchin, Fourier Analysis Methods for PDEs, Lecture Notes, 14 November, 2003.
24 R. Dachin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.       
25 J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508.       
26 J. Escher and Z. Yin, Initial boundary value problems of the Camassa-Holm equation, Commun. Partial Differential Equation, 33 (2008), 377-395.       
27 Y. Fu, G. Gui, Y. Liu and C. Qu, On the Cauchy problem for the integrable Camassa-Holm type equation with cubic nonlinearity, arXiv:1108.5368v2.
28 Y. Fu, Y. Liu and C. Qu, Well-posedness and blow-up solution for a modified twocomponent periodic Camassa-Holm system with peakons, Math. Ann., 348 (2010), 415-448.       
29 Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons, J. Math. Phys., 50 (2009), 012906, 1-25.       
30 Y. Fu and C. Qu, On a new Three-Component Camassa-Holm equation with peakons, Comm. Theor. Phys., 53 (2010), 223-230.
31 G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.       
32 G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system, Math. Z., 268 (2011), 45-66.       
33 A. Himonas and G. Misiolek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584.       
34 H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-a Lagrangianpoiny of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.       
35 H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24 (2009), 1047-1112.       
36 Q. Hu, L. Lin and J. Jin, Well-posedness and blow-up phenomena for a new three-component Camassa-Holm system with peakons, J. Hyper. Differential Equations, 9 (2012), 451-467.       
37 D. Holm and R. Ivanov, Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A, 43 (2010), 492001, 1-21.       
38 D. Holm and R. Ivanov, Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013, 1-21.       
39 D. Holm, L. Onaraigh and C. Tronci, Singular solutions of a modified two-component Camassa-Holm equation, Phys. Rev. E., 79 (2009), 016601, 1-9.       
40 S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.       
41 J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163.       
42 Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.       
43 G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.       
44 L. Tian, Y. Wang and J. Zhou, Global conservative and dissipative solutions of a coupled Camassa-Holm equations, J. Math. Phys., 52 (2011), 063702, 29 pp.       
45 L. Tian and Y. Xu, Attractor for a viscous coupled Camassa-Holm equation, Adv. Differ. Equ., (2010), 512812, 30 pp.       
46 J. F. Toland, Stokes waves, Topol. Methods. Nonlinear Anal., 7 (1996), 1-48.       
47 K. Yan and Z. Yin, Analytic solutions of the Cauchy problem for two-component shallow water systems, Math. Z., 269 (2011), 1113-1127.       
48 M. Zhu and Blow-up, Global Existence and Persistence Properties for the Coupled Camassa-Holm equations, Math Phys. Anal Geom., 14 (2011), 197-209.       

Go to top