`a`
Kinetic and Related Models (KRM)
 

A random cloud model for the Schrödinger equation
Pages: 361 - 379, Issue 2, June 2014

doi:10.3934/krm.2014.7.361      Abstract        References        Full text (256.1K)           Related Articles

Wolfgang Wagner - Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39 - 10117 Berlin, Germany (email)

1 D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden'' variables. I, Physical Rev. (2), 85 (1952), 166-179.       
2 D. Bohm and J. Bub, A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory, Rev. Mod. Phys., 38 (1966), 453-469.       
3 L. Breiman, Probability, Addison-Wesley Publishing Company, Reading, Mass., 1968.       
4 P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Springer-Verlag, New York, 1999.       
5 R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74.       
6 B. S. DeWitt, Quantum mechanics and reality, Physics Today, 23 (1970), 155-165.
7 A. Eibeck and W. Wagner, Stochastic interacting particle systems and nonlinear kinetic equations, Ann. Appl. Probab., 13 (2003), 845-889.       
8 H. Everett, III, "Relative state" formulation of quantum mechanics, Rev. Mod. Phys., 29 (1957), 454-462.       
9 R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys., 20 (1948), 367-387.       
10 R. P. Feynman, The concept of probability in quantum mechanics, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, (1951), 533-541.       
11 R. P. Feynman, Simulating physics with computers, International Journal of Theoretical Physics, 21 (1982), 467-488.       
12 R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics. Vol. 3: Quantum Mechanics, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965.       
13 M. Kac, On distributions of certain Wiener functionals, Trans. Amer. Math. Soc., 65 (1949), 1-13.       
14 M. Kac, Foundations of kinetic theory, in Third Berkeley Symposium on Mathematical Statistics and Probability Theory, 3, University of California Press, Berkeley and Los Angeles, (1956), 171-197.       
15 A. Kolmogoroff, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Ann., 104 (1931), 415-458.       
16 M. A. Leontovich, Basic equations of the kinetic theory of gases from the point of view of the theory of random processes, Zhurnal Ehksper. Teoret. Fiziki, 5 (1935), 211-231, In Russian.
17 N. D. Mermin, What's wrong with this pillow?, Physics Today, 42 (1989), 9-11.
18 E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079-1085.
19 E. Nelson, Review of stochastic mechanics, J. Phys.: Conf. Ser., 361 (2012), 012011, 1-4.
20 T. Norsen and S. Nelson, Yet another snapshot of foundational attitudes toward quantum mechanics, arXiv:1306.4646, (2013), 1-11.
21 S. Rjasanow and W. Wagner, Stochastic Numerics for the Boltzmann Equation, Springer, Berlin, 2005.       
22 E. Schrödinger, Quantisierung als Eigenwertproblem (Erste Mitteilung), Ann. d. Phys., 79 (1926), 361-376.
23 E. Schrödinger, Quantisierung als Eigenwertproblem (Vierte Mitteilung), Ann. d. Phys., 81 (1926), 109-139.
24 W. Wagner, Stochastic models in kinetic theory, Phys. Fluids, 23 (2011), 030602, 1-14.

Go to top