Kinetic theory and numerical simulations of twospecies coagulation
Pages: 253  290,
Issue 2,
June
2014
doi:10.3934/krm.2014.7.253 Abstract
References
Full text (757.6K)
Related Articles
Carlos Escudero  Departamento de Matemáticas & ICMAT (CSICUAMUC3MUCM), Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain (email)
Fabricio Macià  Universidad Politécnica de Madrid, ETSI Navales, Avda. Arco de la Victoria s/n, 28040 Madrid, Spain (email)
Raúl Toral  IFISC (Instituto de Física Interdisciplinar y Sistemas Complejos), CSICUIB, Campus UIB, 07122 Palma de Mallorca, Spain (email)
Juan J. L. Velázquez  Hausdorff Center for Mathematics, Rheinischen FriedrichWilhelmsUniversität Bonn, 53115 Bonn, Germany (email)
1 
G. Arfken, Mathematical Methods for Physicists, 3rd edition, Academic Press, Orlando, 1985. 

2 
J. M. Ball and J. Carr, The discrete coagulationfragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., 61 (1990), 203234. 

3 
M. Bodnar and J. J. L. Velázquez, An integrodifferential equation arising as a limit of individual cellbased models, J. Diff. Eqs., 222 (2006), 341380. 

4 
J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 14021406. 

5 
J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in selfpropelled swarms from kinetic theory, Kin. Rel. Mod., 2 (2009), 363378. 

6 
C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys., 81 (2009), 591646. 

7 
P. Clifford and A. Sudbury, A model for spatial conflict, Biometrika, 60 (1973), 581588. 

8 
M. Conti, B. Meerson, A. Peleg and P. V. Sasorov, Phase ordering with a global conservation law: Ostwald ripening and coalescence, Phys. Rev. E, 65 (2002), 046117. 

9 
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329359. 

10 
A. Czirók, A.L. Barabási and T. Vicsek, Collective motion of selfpropelled particles: Kinetic phase transition in one dimension, Phys. Rev. Lett., 82 (1999), 209212. 

11 
M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Selfpropelled particles with softcore interactions: Patterns, stability and collapse, Phys. Rev. Lett., 96 (2006), 104302. 

12 
G. Deffuant, D. Neu, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Complex Syst., 3 (2000), 8798. 

13 
C. Escudero, F. Macià and J. J. L. Velázquez, Twospecies coagulation approach to consensus by group level interactions, Phys. Rev. E, 82 (2010), 016113. 

14 
C. Escudero, C. A. Yates, J. Buhl, I. D. Couzin, R. Erban, I. G. Kevrekidis and P. K. Maini, Ergodic directional switching in mobile insect groups, Phys. Rev. E, 82 (2010), 011926. 

15 
O. Al Hammal, H. Chaté, I. Dornic and M. A. Muñoz, Langevin description of critical phenomena with two symmetric absorbing states, Phys. Rev. Lett., 94 (2005), 230601. 

16 
E. HernándezGarcía and C. López, Clustering, advection and patterns in a model of population dynamics, Phys. Rev. E, 70 (2004), 016216. 

17 
R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., 3 (1975), 573739. 

18 
C. Huepe and M. Aldana, Intermittency and clustering in a system of selfdriven particles, Phys. Rev. Lett., 92 (2004), 168701. 

19 
S. Janson, D. E. Knuth, T. Luczak and B. Pittel, The birth of the giant component, Rand. Struct. Alg., 4 (1993), 233358. 

20 
M. Kreer and O. Penrose, Proof of dynamical scaling in Smoluchowski's coagulation equation with constant kernel, J. Stat. Phys., 75 (1994), 389407. 

21 
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 3550. 

22 
T. M. Liggett, Interacting Particle Systems, SpringerVerlag, New York, 1985. 

23 
J. B. McLeod, On the scalar transport equation, Proc. London Math. Soc., 14 (1964), 445458. 

24 
G. Menon and R. L. Pego, Approach to selfsimilarity in Smoluchowski's coagulation equations, Commun. Pure Appl. Math., 57 (2004), 11971232. 

25 
H. S. Niwa, School size statistics of fish, J. Theor. Biol., 195 (1998), 351361. 

26 
F. Peruani, A. Deutsch and M. Bär, Nonequilibrium clustering of selfpropelled rods, Phys. Rev. E, 74 (2006), 030904(R). 

27 
M. Pineda, R. Toral and E. HernándezGarcía, Noisy continuousopinion dynamics, J. Stat. Mech., (2009), P08001. 

28 
J. Seinfeld, Atmospheric Chemistry and Physics of Air Polution, Wiley, New York, 1986. 

29 
J. Silk and S. D. White, The development of structure in the expanding universe, Astrophys. J., 223 (1978), L59L62. 

30 
T. Sintes, R. Toral and A. Chakrabarti, Reversible aggregation in selfassociating polymer systems, Phys. Rev. E, 50 (1994), 29672976. 

31 
R. Toral and J. Marro, Cluster kinetics in the lattice gas model: The BeckerDoring type of equations, J. Phys. C: Solid State Phys., 20 (1987), 24912500. 

32 
R. Toral and C. J. Tessone, Finite size effects in the dynamics of opinion formation, Commun. Comput. Phys., 2 (2007), 177195. 

33 
F. Vázquez and C. López, Systems with two symmetric absorbing states: relating the microscopic dynamics with the macroscopic behavior, Phys. Rev. E, 78 (2008), 061127. 

34 
C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini and D. J. T. Sumpter, Inherent noise can facilitate coherence in collective swarm motion, Proc. Nat. Acad. Sci. USA, 106 (2009), 54645469. 

35 
R. M. Ziff, Kinetics of polymerization, J. Stat. Phys., 23 (1980), 241263. 

Go to top
