`a`
Mathematical Biosciences and Engineering (MBE)
 

A continuous phenotype space model of RNA virus evolution within a host
Pages: 919 - 927, Issue 4, August 2014

doi:10.3934/mbe.2014.11.919      Abstract        References        Full text (223.5K)           Related Articles

Andrei Korobeinikov - Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain (email)
Conor Dempsey - Department of Neuroscience, Columbia University, 40 Haven Avenue, New York, NY 10032, United States (email)

1 R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Philos. Trans. R. Soc. Lond. Ser. B, 291 (1981), 451-524.
2 V. Andreasen, Dynamics of annual influenza A epidemics with immuno-selection, J. Math. Biol., 46 (2003), 504-536.       
3 V. Andreasen, S. Levin and J. Lin, A model of influenza A drift evolution, Z. Angew. Math. Mech., 76 (1996), 421-424.
4 M. F. Boni, J. R. Gog, V. Andreasen and M. W. Feldman, Epidemic dynamics and antigenic evolution in a single season of influenza A, Proc. R. Soc. B, 273 (2006), 1307-1316.
5 V. Calvez, A. Korobeinikov and P. K. Maini, Cluster formation for multi-strain infections with cross-immunity, J. Theor. Biol., 233 (2005), 75-83.       
6 J. R. Gog and B. T. Grenfell, Dynamics and selection of many-strain pathogens, Proc. Natl Acad. Sci. USA, 99 (2002), 17209-17214.
7 Y. Haraguchi and A. Sasaki, Evolutionary pattern of intra-host pathogen antigenic drift: Effect of crossreactivity in immune response, Phil. Trans. R. Soc. B, 352 (1997), 11-20.
8 T. Inoue, T. Kajiwara and T. Sasaki, Global stability of models of humoral immunity against multiple viral strains, Journal of Biological Dynamics, 4 (2010), 282-295.       
9 S. Iwami, T. Miura, S. Nakaoka and Y. Takeuchi, Immune impairment in HIV infection: Existence of risky and immunodeficiency thresholds, J. Theor. Biol., 260 (2009), 490-501.       
10 Y. Iwasa, F. Michor and M. A. Nowak, Virus evolution within patients increases pathogenicity, J. Theor. Biol., 232 (2005), 17-26.       
11 A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Byul. Moskovskogo Gos. Univ., 1 (1937), 1-25. also in Selected Works of A.N. Kolmogorov: Mathematics and Mechanics, Kluwer, Dordrecht, (1991), 1-25.
12 A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26 (2009), 225-239.
13 A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model, Math. Med. Biol., 26 (2009), 309-321.       
14 J. Lin, V. Andreasen, R. Casagrandi and S. A. Levin, Traveling waves in a model of influenza A drift, J. Theor. Biol., 222 (2003), 437-445.       
15 L. M. Mansky and H. M. Temin, Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase, Journal of Virology, 69 (1995), 5087-5094.
16 M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May, Antigenic diversity threshold and the development of AIDS, Science, 254 (1991), 963-969.
17 M. A. Nowak and R. M. May, Virus Dynamics, Oxford University Press, 2000.       
18 A. Rambaut, D. Posada, K. A. Crandall and E. C. Holmes, The causes and consequences of HIV evolution, Nature Reviews, 5 (2004), 52-61. http://tree.bio.ed.ac.uk/downloadPaper.php?id=242.
19 J. Saldaña, S. F. Elena and R. V. Solé, Coinfection and superinfection in RNA virus populations: A selection-mutation model, Math. Biosci., 183 (2003), 135-160.       
20 A. Sasaki, Evolution of antigenic drift/switching: Continuously evading pathogens, J. Theor. Biol., 168 (1994), 291-308.
21 A. Sasaki and Y. Haraguchi, Antigenic drift of viruses within a host: A finite site model with demographic stochasticity, J. Mol. Evol., 51 (2000), 245-255.
22 M. O. Souza and J. P. Zubelli, Global stability for a class of virus models with cytotoxic T lymphocyte immune response and antigenic variation, Bull. Math. Biol., 73 (2011), 609-625.       
23 M. A. Stafford et al., Modeling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285-301.
24 L. S. Tsimring, H. Levine and D. A. Kessler, RNA virus evolution via a fitness-space model, Phys. Rev. Lett. 76 (1996), 4440-4443.
25 C. Vargas-De-León and A. Korobeinikov, Global stability of a population dynamics model with inhibition and negative feedback, Math. Med. Biol., 30 (2013), 65-72.       
26 D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune responses in viral infections, TRENDS in Immunology, 23 (2002), 194-200.
27 D. Wodarz, P. Klenerman and M. A. Nowak, Dynamics of cytotoxic T-lymphocyte exhaustion, Proc. R. Soc. Lond. B 265 (1998), 191-203.

Go to top