A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme
Pages: 679  721,
Issue 4,
August
2014
doi:10.3934/mbe.2014.11.679 Abstract
References
Full text (693.9K)
Related Articles
Azmy S. Ackleh  Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 705041010, United States (email)
Mark L. Delcambre  Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 705041010, United States (email)
Karyn L. Sutton  Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 705041010, United States (email)
Don G. Ennis  Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 705042451, United States (email)
1 
L. M. Abia, O. Angulo, J. C. LopezMarcos and M. A. LopezMarcos, Numerical schemes for a sizestructured cell population model with equal fission, Mathematical and Computer Modelling, 50 (2009), 653664. 

2 
L. M. Abia, O. Angulo and J. C. LopezMarcos, Sizestructured population dynamics models and their numerical solutions, Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 12031222. 

3 
L. M. Abia and J. C. LopezMarcos, Second order schemes for agestructured population equations, Journal of Biological Systems, 5 (1997), 116. 

4 
A. S. Ackleh, B. Ma and J. J. Thibodeaux, A secondorder high resolution finite difference scheme for a structured erythropoiesis model subject to malaria infection, Mathematical Biosciences, 245 (2013), 211. 

5 
A. S. Ackleh and K. Deng, A monotone approximation for a nonlinear non autonomous sizestructured population model, Applied Mathematics and Computation, 108 (2000), 103113. 

6 
A. S. Ackleh, K. Deng, K. Ito and J. Thibodeaux, A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate, Mathematical Biosciences and Engineering, 204 (2006), 2148. 

7 
A. S. Ackleh and K. Ito, An implicit finite difference scheme for the nonlinear sizestructured population model, Numerical Functional Analysis and Optimization, 18 (1997), 865884. 

8 
A. S. Ackleh, K. Deng and Q. Huang, Existenceuniqueness results and difference approximations for an amphibian juvenileadult model, Contemporary Mathematics, 513 (2010), 123. 

9 
A. S. Ackleh, K. L. Sutton, K. N. Mutoji, A. Mallick and D. G. Ennis, A structured model for the transmission dynamics of Mycobacterium marinum between aquatic animals, Journal of Biological Systems, doi:10.1142/S0218339014500028. 

10 
A. S. Ackleh and J. Thibodeaux, Parameter estimation in a structured erythropoiesis model, Mathematical Biosciences and Engineering, 5 (2008), 601616. 

11 
O. Angulo and J. C. LopezMarcos, Numerical schemes for sizestructured population equations, Mathematical Biosciences, 157 (1999), 169188. 

12 
O. Angulo and J. C. LopezMarcos, Numerical integration of fully nonlinear sizestructured population models, Applied Numerical Mathematics, 50 (2004), 291327. 

13 
T. Arbogast and F. A. Milner, A finite element method for a twosex model of population dynamics, SIAM Journal of Numerical Analysis, 26 (1989), 14741486. 

14 
H. T. Banks, C. E. Cole, P. M. Schlosser and H. T. Tran, Modeling and optimal regulation of erythropoiesis subject to benzene intoxication, Mathematical Biosciences and Engineering, 1 (2004), 1548. 

15 
H. T. Banks, F. Kappel and C. Wang, A semigroup formulation of a nonlinear sizestructured distributed rate population model, International Series of Numerical Mathematics, 118 (1994), 119. 

16 
D. Bleed, C. Dye and M. C. Raviglione, Dynamics and control of the global tuberculosis epidemic, Current Opinion in Pulmonary Medicine, 6 (2000), 174179. 

17 
G. W. Broussard and D. G. Ennis, Mycobacterium marinum produces longterm chronic infections in medaka: A new animal model for studying human tuberculosis, Comparative Biochemistry and Physiology, Part C, 145 (2007), 4554. 

18 
G. W. Broussard, M. B. Norris, R. N. Winn, J. Fournie, A. Schwindt, M. L. Kent and D. G. Ennis, Chronic mycobacterosis acts as a tumor promoter for hepatocarcinomas in Japanese medaka, Comparative Biochemistry and Physiology, Part C, 149 (2009), 152160. 

19 
C. L. Cosma, D. R. Sherman and L. Ramakrishnan, The secret lives of the pathogenic mycobacteria, Annual Review of Microbiology 57 (2003), 641676. 

20 
J. M. Davis, H. Clay, J. L. Lewis, N. Ghori, P. Herbomel and L. Ramakrishnan, Realtime visualization of Mycobacteriummacrophage interactions leading of initiation of granuloma formation in zebrafish embryos, Immunity, 17 (2002), 693702. 

21 
S. H. ElEtr, L. Yan and J. D. Cirillo, Fish monocytes as a model for mycobacterial hostpathogen interactions, Infection and Immunity, 69 (2001), 73107317. 

22 
R. E. Gozlan, S. StHilaire, S. W. Feist, P. Martin and M. L. Kent, Disease threat to European fish, Nature, 435 (2005), 1046. 

23 
A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics, 49 (1983), 357393. 

24 
R. P. Hedrick, T. McDowell and J. Groff, Mycobacteriosis in cultured striped bass from California, Journal of Wildlife Diseases, 23 (1987), 391395. 

25 
W. Huyer, A size structured population model with dispersion, Journal of Mathematical Analysis and Applications, 181 (1994), 716754. 

26 
M. Iannelli, T. Kostova and F. A. Milner, A fourthorder method for numerical integration of age and sizestructured population models, Numerical Methods for Partial Differential Equations, 25 (2009), 918930. 

27 
T. Iwamatsu, Stages of normal development in the medaka oryzias latipes, Zoological Science, 11 (1994), 825839. 

28 
J. M. Jacobs, C. B. Stine, A. M. Baya and M. L. Kent, A review of mycobacteriosis in marine fish, Journal of Fish Diseases, 32 (2009), 119130. 

29 
T. Kostova, An explicit thirdorder numerical method for sizestructured population equations, Numerical Methods for Partial Differential Equations, 19 (2003), 121. 

30 
P. K. Mehta, A. K. Pandey, S. Subbian, S. H. ElEtr, S. L. Cirillo, M. M. Samrakandi and J. D. Cirillo, Identification of Mycobacterium marinum macrophage infection mutants, Microbial Pathogenesis, 40 (2006), 139151. 

31 
E. Miltner, K. Daroogheh, P. K. Mehta, S. L. Cirillo, J. D. Cirillo and L. E. Bermudez, Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium, Infection and Immunity, 73 (2005), 42144221. 

32 
N. Moes, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46 (1999), 131150. 

33 
K. Nadine Mutoji, Investigation into Mechanisms of Mycobacterial Transmission Between Fish, Ph.D. Dissertation, University of Louisiana at Lafayette, 2011. 

34 
K. N. Mutoji and D. G. Ennis, Expression of common fluorescent reporters may modulate virulence for Mycobacterium marinum: Dramatic attenuation results from GFP overexpression, Comparative Biochemistry and Physiology,Part C, 155 (2012), 3948. 

35 
A. Oscar and J. C. LopezMarcos, Numerical schemes for sizestructured population equations, Mathematical Biosciences, 157 (1999), 169188. 

36 
M. G. Prouty, N. E. Correa, L. P. Barker, P. Jagadeeswaran and K. E. Klose, ZebrafishMycobacterium marinum model for mycobacterial pathogenesis, FEMS Microbiology Letters, 225 (2003), 177182. 

37 
M. C. Raviglione, D. E. Snider Jr and A. Kochi, Global epidemiology of tuberculosis: Morbidity and mortality of a worldwide epidemic, Journal of the American Medical Association, 40 (1996), 220226. 

38 
J. Shen, C. W. Shu and M. Zhang, High resolution schemes for a hierarchical size structured model, SIAM Journal on Numerical Analysis, 45 (2007), 352370. 

39 
J. Shen, C. W. Shu and M. Zhang, A high order WENO scheme for a hierarchical sizestructured population model, Journal of Scientific Computing, 33 (2007), 279291. 

40 
J. Smoller, Shock Waves and ReactionDiffusion Equations, 2nd edition, SpringerVerlag, New York, 1994. 

41 
T. P. Stinear, T. Seemann, P. F. Harrison, G. A. Jenkin, J. K. Davies, P. D. R. Johnson, Z. Abdellah, C. Arrowsmith, T. Chillingworth, C. Churcher, K. Clarke, A. Cronin, P. Davis, I. Goodhead, N. Holroyd, K. Jagels, A. Lord, S. Moule, K. Mungall, H. Norbertczak, M. A. Quail, E. Rabbinowitsch, D. Walker, B. White, S. Whitehead, P. L. C. Small, R. Brosch, L. Ramakrishnan, M. A. Fischbach, J. Parkhill and S. T. Cole, Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis, Genome Research, 18 (2008), 729741. 

42 
A. M. Talaat, R. Reimschuessel, S. S. Wasserman and M. Trucksis, Goldfish, Carassius auratus, a novel animal model for the study of Mycobacterium marinum pathogenesis, Infection and Immunity, 66 (1998), 29382942. 

43 
J. J. Thibodeaux, Modeling erythropoiesis subject to malaria infection, Mathematical Biosciences, 225 (2010), 5967. 

44 
D. M. Tobin and L. Ramakrishnan, Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis, Cellular Microbiology, 10 (2008), 10271039. 

45 
W. Walter, Ordinary Differential Equations, Springer, New York, 1998. 

46 
R. Zhang, M. Zhang and C. W. Shu, High order positivitypreserving finite volume WENO schemes for a hierarchical sizestructured population model, Journal of Computational and Applied Mathematics, 236 (2011), 937949. 

Go to top
